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Abstract
This dissertation investigates how to reduce communication overhead in privacy-
preserving applications. It develops two complementary directions toward this
goal. The first studies how sublinear communication protocols can be achieved
for tasks such as secure search over encrypted datasets, secure collaborative
sampling protocols, and sublinear approximation algorithms such as Min-Hash
for set similarity. These techniques serve as common building blocks across a
wide range of privacy-preserving applications. Together, these results reveal a
unified perspective on how limited communication and provable privacy reinforce
each other across modern cryptographic and data-analytic settings. The second
direction extends these to practical systems such as the FACTS framework for
privacy-preserving accountability on end-to-end encrypted messaging systems
(EEMS). This work enables threshold tracebacks to identify the originator of
reported messages while the cost depends only on the number of reports, and
includes preliminary designs and analysis for extending these mechanisms to
identify the super-spreader of reported messages.

1 Introduction
The modern digital landscape is defined by a fundamental tension between the
exponential growth of data and the imperative to protect the privacy of the
individuals generating it. As datasets scale into the terabytes and petabytes, and
as digital communication becomes the primary medium for societal discourse, the
computational paradigms that served the early internet are reaching their limits.
Traditional cryptographic protocols for privacy-preserving applications, such as
Secure Multi-Party Computation (MPC) and Fully Homomorphic Encryption
(FHE), offer mathematically robust guarantees of confidentiality. However, these
protocols typically exhibit linear or super-linear complexity with respect to the
input size (O(n)). In a world of massive datasets, linear complexity is often
synonymous with infeasibility. A query that requires touching every record in a
billion-row database, even if cryptographically secure, remains practically useless
if it takes days to execute.

Consequently, one important frontier of cryptographic research has shifted
toward the development of sublinear algorithms—protocols whose complexity
is logarithmic, constant with respect to the input size, or dependent only on the
output size. This thesis proposal report synthesizes four seminal contributions
that pioneer this shift across two distinct but interrelated domains.

The first domain, Sublinear Secure Protocols, comprises three studies
that attack the fundamental algorithmic bottlenecks of secure computation.
These works introduce a new data structure for compressing large sparse data
vectors for homomorphically encrypted search to allow for parallel, sublinear
retrieval, develop protocols for secure sampling from distributed distributions
without linear communication, and investigate the inherent privacy properties of
sketching algorithms (Min-Hash).
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The second domain, designated as FACTS, addresses the societal crisis
of misinformation within end-to-end encrypted messaging systems (EEMS).
Here, the challenge is not merely computational efficiency but the architectural
reconciliation of user privacy with platform accountability. The proposed solution,
the Fuzzy Anonymous Complaint Tally System (FACTS), leverages a novel
probabilistic data structure to achieve sublinear scalability in complaint auditing,
proving that privacy and moderation need not be mutually exclusive.

A unifying theme across both groups is the strategic utilization of approx-
imation and probabilistic correctness. Whether it is the fuzzy counting
of complaints in FACTS, the rejection sampling in secure estimation, or the
false-positive rates of compressed encodings in search, these works demonstrate
that controlled relaxation of exactness is the key to unlocking sublinear perfor-
mance. This introduction delineates the theoretical underpinnings and practical
implications of these advancements, setting the stage for a detailed technical
analysis.

1.1 The Linear Bottleneck in Secure Computation
To understand the necessity of the contributions discussed herein, one must first
appreciate the “Linearity Wall.” In standard secure multi-party computation, if
Party A holds a vector x and Party B holds a vector y, computing a function
f(x, y) usually requires processing every bit of the inputs to avoid leaking
information about which bits were “useful”. For example, in Private Information
Retrieval (PIR), the server must process the entire database to answer a single
query; otherwise, the server learns which items were not touched, narrowing
down the user’s interest.

While techniques like Oblivious RAM (ORAM) can hide access patterns,
they impose logarithmic overheads that, while asymptotically better than linear
scanning for multiple accesses, still require significant bandwidth and state
management. The research in Sublinear Secure Protocols specifically targets
scenarios where even these overheads are unacceptable, aiming for protocols
where communication depends on the output size or the security parameter,
rather than the input database size.

1.2 Sublinear Secure Protocols: Primitives for Sublinear
Privacy

This line of research explores the building blocks of sublinear privacy.

• Encrypted Search: The first paper tackles the sequential bottleneck
in FHE search. Prior systems required a round of interaction for every
matching record found. The authors propose Compressed Oblivious
Encoding (COE), allowing a server to compress all search results into
a single package. This reduces the fetching time by orders of magnitude
(1800x in experiments), effectively making FHE search viable for real-time
applications.
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• Secure Sampling: The second paper addresses the problem of sampling
from joint distributions (e.g., L1, L2, Product) partitioned across users. It
proves that while general product sampling is impossible with sublinear
communication, specific correlated inputs allow for efficient protocols. The
introduction of Corrective Sampling—a technique that corrects a proxy
distribution into a target distribution without computing normalization
factors—allows for constant-round sampling protocols.

• Min-Hash Privacy: The third paper in this group interrogates the “folk-
lore” that sketching algorithms like Min-Hash are inherently private. It
rigorously proves that while sketches compress data (sublinear representa-
tion), they do not automatically guarantee Differential Privacy (DP) in the
public hash setting. The authors introduce Distributional Differential
Privacy (DDP) and Noisy Min-Hash to bridge this gap, allowing for
constant-size comparisons of massive sets with formal privacy guarantees.

Collectively, these works argue that the future of privacy-preserving technolo-
gies lies in the domain of sublinear algorithms, where mathematical approxima-
tion provides the necessary slack to achieve scalability.

1.3 FACTS: Accountability via Probabilistic Structures
This line of research focuses on the application of “fighting fake news”. end-to-
end encrypted messaging systems (EEMS) platforms like WhatsApp and Signal
utilize encryption that hides message content from the service provider. This
prevents any content moderation methods that rely on analyzing the content in
the clear, such as tools used by platforms like Facebook or Twitter. The FACTS
system introduces a paradigm where moderation is triggered only by a consensus
of user complaints.

The core innovation here is the Collaborative Counting Bloom Filter
(CCBF). This data structure allows the system to tally complaints against
millions of messages without the server knowing which complaints correspond to
which message until a threshold is crossed. This is achieved by “mixing” counters
in a shared bit array. The efficiency is sublinear in the number of messages in the
system per epoch: identifying a message for audit requires no linear scan of the
database, and registering a complaint requires flipping a single bit. This work
exemplifies how probabilistic data structures—traditionally used for efficiency in
networking–can be repurposed as privacy primitives.

2 Literature Review
This section surveys existing literature relevant to the two primary lines of work.
First, we discuss the foundational cryptographic primitives and protocols for
Secure Search, Secure Sampling, and Privacy-Preserving Set Simi-
larity. Second, we review the literature relevant to our specific application in
accountability systems of end-to-end encrypted messaging systems, FACTS.
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2.1 Line 1: Secure Search, Sampling, and Similarity
This line of work focuses on optimizing privacy-preserving protocols for retrieving
and analyzing data. We divide the literature into three interconnected domains:
secure search, secure sampling, and set similarity.
Differential privacy (DP). Differential privacy limits what an adversary can
learn about any individual input from the output of a computation [60,63]. For
an overview of DP and standard mechanisms in both the curator setting and
distributed settings, we refer the reader to the book by Dwork and Roth [66].
DP will appear repeatedly in our discussion, both as an explicit privacy goal
and as a tool for trading accuracy for improved efficiency.

2.1.1 Secure Search

Secure search is a widely-studied problem with solutions spanning various cryp-
tographic settings. In the discussion below, let n denote the number of data
items.
Secure pattern matching (SPM) on FHE-encrypted data. In SPM,
given an encrypted query JqK and n FHE-encrypted data items (Jx1K, . . . , JxnK),
the protocol returns a vector of n ciphertexts Jb1K, . . . , JbnK, where bi indicates
whether the i-th data element matches the query [43,44, 123,187]. These works
primarily focus on optimizing the search circuits used to determine matches.
Consequently, the communication complexity and the client’s running time
remain proportional to the number of data items. In contrast, our work focuses
on the orthogonal problem of optimizing the retrieval of matched data items,
aiming for sublinear communication and client computation.
Searchable encryption (SE). Searchable encryption [29, 167] enables highly
efficient search (typically o(n) time) over encrypted data. Efficient SE schemes
have been proposed for a wide variety of queries, including equality queries [41,
54], range queries [107, 157], and conjunctive queries [37, 147]. However, to
achieve sublinear query performance, SE schemes generally require significant
preprocessing and must relax security guarantees, allowing partial information
(such as access patterns) to leak to the server [82]. Unlike standard SE, our work
focuses on achieving preprocessing-free constructions that leak nothing about
the queries or results beyond their sizes.
Property Preserving Encryption (PPE). PPE [146] produces ciphertexts
that maintain certain relationships (e.g., equality or order) of the underlying
plaintexts. Examples include deterministic encryption [19] and order-preserving
encryption [27, 28]. However, it has been demonstrated [96, 97, 109] that such
ciphertexts leak significant information, rendering them undesirable for many
security-critical applications.
General Techniques (PIR, MPC, ORAM, ODS). Private Information
Retrieval (PIR) [47] allows retrieval while hiding the index, but requires the
client to know the index beforehand. General MPC [186] and ORAM [89] can
theoretically solve secure search, but generic constructions typically incur high
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communication (Ω(n) for MPC) or significant overhead to hide access patterns.
Oblivious data structures (ODS) can support richer data structures (e.g., search
trees), but typical ODS constructions incur Ω(log2 n) rounds per operation,
which motivates constant-round designs for practical secure search.

2.1.2 Secure Sampling

Sampling from streaming data. Non-private sampling from data streams
has been studied extensively [49,83,115,140,182], typically achieving ℓp sampling
with sublinear computation. These works generally operate in a single-party
setting and do not consider privacy.
Secure multiparty sampling. In the privacy domain, works like [153,154]
investigate sampling in the information-theoretic setting, while Champion et
al. [39] consider the computational setting for publicly-known distributions.
Our work is distinct in focusing on sampling from a private distribution in the
computational setting, with a specific emphasis on reducing communication.
Secure MPC of differentially private functionalities. Since Dwork et
al. [62], significant work has focused on using MPC to realize DP functional-
ities [1, 48, 70]. While these works address machine learning and aggregation,
we focus specifically on optimizing the communication complexity for sampling
functionalities.

2.1.3 Private Sketching and Secure Sketching

Secure sketching. A long line of work studies secure sketches for estimating
statistics (e.g., Tor usage, web traffic, unique count, median) with sublinear
communication and computation [45,69,112,136,178]. These works are closely
related in spirit, but generally focus on building secure protocols for specific
streaming-style statistics, whereas our focus is on sublinear primitives (search,
sampling, and similarity) that can serve as broadly reusable building blocks.
Private sketching. Sketching algorithms are sublinear-space methods that
produce compact summaries enabling efficient storage, merging, and processing.
A growing body of work observes that sketches can also aid privacy, since
information loss in the sketch can make the sketch itself differentially private or
reduce the additional noise required [15,16, 24,46,56, 101,104,127,137,138,145,
165,179,189]. Related work also constructs private sketches for set cardinality
and set operations, including mergeable sketches for estimating intersection and
union [101,124,142,144,168,169]. This perspective directly motivates our study
of privacy properties of Min-hash and related similarity sketches.

2.1.4 Set Similarity via Min-Hash

Jaccard Index and Min-Hash. Many works have constructed 2-party Jaccard
index estimation protocols using Min-hash with sublinear communication to
avoid the high cost of exact computation [52,72,156].

9



Differentially Private (DP) Min-Hash. Recent research aims to output
Jaccard similarity estimates while preserving differential privacy. Aumüller et
al. [10] achieve local DP min-hash by perturbing vectors with noise. Other
attempts have faced challenges; for example, [185] was shown to have flaws in
its privacy claim, while [184] incurs high noise overhead.
Optimizing Secure Computation using DP. Our work sits at the intersec-
tion of DP and MPC. A specific line of research relevant to our goals is optimizing
secure computation using DP, initiated by Beimel et al. [17]. Subsequent works
have applied this to set intersection [94,100], graph-parallel computations [133],
and shuffling [92]. We similarly leverage DP-style relaxations to improve the
efficiency of similarity protocols.
Secure approximation. Secure approximation studies what functions can be
securely approximated without revealing anything beyond the true output [76,99].
This notion is distinct from DP-style approximation, but it is conceptually
adjacent: both investigate how controlled relaxation can enable more efficient
privacy-preserving computation.
Robust sketching and property-preserving hashing. Property-preserving
hash (PPH) compresses large inputs into short digests enabling computation
of a property from the digests alone, and adversarially robust PPH further
requires correctness even when inputs are adaptively chosen after the hash
is fixed [30, 80, 81, 103]. Related work on robust sketching similarly studies
sketches that remain accurate under adaptive inputs [9, 20]. These works focus
on robustness to adversarial inputs, whereas our focus is on privacy when the
adversary additionally sees the hash functions or sketch randomness.

2.2 Line 2: FACTS (Forwarding Accountability in End-to-
End Encrypted Messaging Platforms)

Our second line of work shifts focus to a specific application: enabling account-
ability in end-to-end encrypted messaging systems.
Message Franking. The prevailing approach for reporting malicious messages
is message franking [57,95,176]. This technique allows a recipient to cryptograph-
ically prove the identity of the sender. However, message franking is limited
to identifying the immediate sender and cannot trace the original source in a
forwarding chain. Furthermore, it does not provide threshold guarantees to
prevent unmasking users based on a single complaint.
Scalable Oblivious Data Structures. FACTS requires scalable oblivious stor-
age to track complaints. While multi-client ORAM protocols exist [38, 102,131],
they do not yet scale to the millions of users required for messaging applica-
tions. Similarly, oblivious counters [86,120] generally focus on exact counting
or complex operations, lacking the specific compression traits of the Compact
Count-Min Bloom Filter (CCBF) we utilize. More generally, oblivious data
structures [122, 161,180] enable higher-level oblivious operations over encrypted
data, but do not directly provide the compression needed to store and update
complaint tallies at large scale.
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Private Sketching for User-Server Settings. CCBF can be viewed as
a compact sketch for storing complaint counts over a large set of messages.
There has been significant interest in privacy-preserving sketching algorithms for
cardinality estimation, frequency measurement, and related approximations [45,
178]. However, much of this literature targets multi-party settings (often with
multiple servers) where parties run secure computation to evaluate the statistic.
In contrast, FACTS restricts communication to the user–server model, which
limits the direct applicability of these approaches.

3 Secure Search

3.1 Introduction
As computing paradigms are shifting to cloud-centric technologies, users of these
technologies are increasingly concerned with the privacy and confidentiality of
the data they upload to the cloud. Specifically, a client uploads data to the
server and expects the following guarantees:

1. The uploaded data should remain private, even from the server itself;

2. The server should be able to perform computations on the uploaded data
in response to client queries;

3. The client should be able to efficiently recover the results of the server’s
computation with minimal post-processing.

In this work, we will focus on the computational task of secure search. In
this application, the client uploads a set of records to the server, and later posts
queries to the server. Computation proceeds in two steps called matching and
fetching. In the matching step, the server compares the encrypted search query
from the client with all encrypted records in the database, and computes an
encrypted 0/1 vector, with 1 indicating that the corresponding record satisfies the
query. The fetching step returns all the 1-valued indexes and the corresponding
records, to the client for decryption.

While seemingly conflicting goals, the guarantees of (1), (2), (3) can be
simultaneously achieved for the secure search setting via techniques such as
secure multiparty computation and searchable encryption. Recently, a line of
works has focused on Fully Homomorphic Encryption (FHE)-based secure search,
which we describe next.
FHE-based secure search. The simplicity of the framework of secure search
on FHE encrypted data is attractive. Compared to other secure search systems,
no costly setup procedure is necessary; it is sufficient for the client merely
to upload the encrypted database to the server. Confidentiality is provided
because the server works only on the encrypted query and records. The server
can still perform the search correctly due to the powerful property of the full
homomorphism of the underlying encryption scheme.
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Client

sk pk query q

Server

pk
JxK = (Jx1K, . . . , JxnK)

¬ Send encrypted query JqK

­ Homomorphically evaluate
JqK on JxK® Return index Ji∗K and data Jxi∗K

¯ Decrypt i∗ and xi∗

In the above, J·K denotes an FHE-encrypted ciphertext.

Figure 1: The secure search framework in [2]

For this reason, researchers have been paying increasing attention to this
problem. In particular, Akavia et al. [2] introduce a framework of performing
secure search on FHE-encrypted data (see Figure 1).

Informally, a secure, homomorphic encrypted search scheme has the following
Setup:

1. (Setup) The client encrypts and uploads n items x = (x1, . . . , xn) to the
server. Let JxK = (Jx1K, . . . , JxnK). denote the encrypted data stored in the
server.

Throughout the paper, we let J·K denote an FHE-encrypted ciphertext. After
the encrypted records have been uploaded, the client can perform a secure search
using three algorithms, (Query, Match, Fetch).

2. (Query) The client sends an encrypted query JqK to the server.

3. (Match) The server homomorphically evaluates the query JqK on each record
JxiK to obtain the encrypted matching results JbK = (Jb1K, . . . , JbnK). That
is, bi is 1 if item xi satisfies the given query q; otherwise, bi is 0.

4. (Fetch) Given JbK, the server homomorphically computes Ji∗K, where i∗ =
min{i ∈ [n] : bi = 1} which corresponds to the first matching record
index. It fetches Jxi∗K (obliviously) and sends (Ji∗K, Jxi∗K) to the client for
decryption.

Multiplications in the fetching step. Akavia et al. also provide a construc-
tion that performs the fetching step in O(n log2 n) homomorphic multiplications.
Subsequently, more efficient algorithms have been presented with O(n logn)
multiplications [3] and O(n) multiplications [181].

3.1.1 Motivation

Bottleneck: fetching records sequentially. Suppose a client wants to fetch
all matching items. Under the above framework, the client would first obtain
the first matching index i∗ and its corresponding item xi∗ . To fetch the second
matching item, the framework suggests that the client should slightly change
the original query q to a new query q′i∗ as follows:

12



• q′i∗(i, xi) return true if q(i, xi) is true and i > i∗.

Then, by executing a new instance of the protocol with the encrypted
query Jq′i∗K, the client will obtain the second matching item. By repeating this
procedure, the client will ultimately obtain all the matching records.

Note that the query q′i∗ embeds i∗ in itself as a constant, which implies that
there is no way for the client to construct this query q′i∗ without obtaining i∗

first. In other words, the client can construct the query for the second matching
item, only after fetching the first matching item. In this sense, the framework
inherently limits the client to fetch only a single matching record at a time in a
sequential manner.

If there are ℓ matching records, the client and server have to execute ℓ in-
stances of the Query, Match, and Fetch algorithms. Since each Match and Search
step requires costly homomorphic multiplications, the limitation of sequential
protocol execution creates a serious bottleneck with respect to the running time.
This leads us to ask the following natural question:

Is there a different secure search framework that allows the client to fetch all
the matching records by executing a smaller number of protocol executions,
possibly avoiding sequential record fetching?

Reducing homomorphic multiplications. All previous schemes have to per-
form Ω(n) homomorphic multiplications in the fetching step. Since homomorphic
multiplications are costly operations, it is desirable to reduce such computations,
which begs the natural following question:

Can you reduce the number of homomorphic multiplications in the fetching
step?

In this paper, we answer both of the above questions affirmatively.

3.1.2 Our Work

Parallelizing the Fetch procedure. To address the issues, we introduce a
new secure search framework where the matching items are retrieved in parallel
in a constant number of rounds. Our Setup, Query and Match algorithms are the
same as in prior work. However, we modify the Fetch procedure, dividing into
two steps: Encode and Decode. In the Encode step, the server homomorphically
inserts the matching items into a data structure - the particular structure
depends on the construction, as we provide 3 different constructions, each using
a different encoding. After receiving the encrypted encoding, the client decrypts
the encoding and runs the Decode step to recover the items.
Compressed oblivious encoding. The encoding is computed homomorphi-
cally, and, most importantly, allows to encode the full result set, rather than
just a single item. In particular, we introduce a notion of Compressed Oblivi-
ous Encoding (COE). A compressed oblivious encoding takes as input a large,

13



rounds #Match hmult hadd smult communication plaintext modulus
LEAF [181] s s O(ns) O(ns log n) 0 O(s · log n · |C|) 2
Protocol w/ BF-COIE 3 1 0 O(n log n

s ) 0 O(s1+ϵ log n
s · |C|+ pir(s)) prime

Protocol w/ PS-COIE 3 1 0 n · s n · s O(s · |C|+ pir(s)) prime
Protocol w/ BFS-CODE 2 1 n O(κn) 0 O(sκ · |C|) prime

• κ: statistical security parameter.

• n: number of uploaded encrypted records.

• s: number of matching records.

• ϵ: protocol parameter such that 0 < ϵ < 1.

• #Match: number of times the matching algorithm is executed.

• hmult: number of homomorphic multiplication operations used in the
overall fetching step.

• hadd: number of homomorphic addition operations used in the overall
fetching step.

• smult: number of scalar (plain) multiplication operations used in the overall
fetching step.

• |C|: length of an FHE ciphertext.

• pir(s): communication complexity required to retrieve s records via a PIR
protocol.

Figure 2: Performance Comparisons when s records are fetched
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but sparse, vector and compresses it to a much smaller encoding from which
the non-zero entries of the original vector can be recovered. What makes this
encoding oblivious is that the encoding procedure is performed on encrypted
data. In certain constructions, the encoding includes the data values (CODE,
compressed oblivious data encoding), and in others it only includes the indices
(COIE, compressed oblivious index encoding). In the latter case, the Decode
procedure is interactive, and allows the client to recover the values from the
decoded set of indices.

For simplicity, when describing the generic syntax of secure search scheme, we
denote the Encode procedure as taking both the indices and the values as input,
and we suppress the fact that when the values are not used during Encoding,
the Decoding step must be interactive. Recall, we use JbK = (Jb1K, . . . , JbnK) to
denote the encrypted bit vector that results from the Match step.

4. (Encode) Let S = {i ∈ [n] : bi = 1}. Let V = {vi : i ∈ S}. The server
homomorphically evaluates an Jencoding(S, V )K and send it to the client.

5. (Decode) The client decrypts Jencoding(S)K and runs the decoding proce-
dure to recover (S, V ).

We assume that the results set |S| is small (i.e., sublinear in n). We would like
the size of the compressed encoding to be sublinear in n to maintain meaningful
communication cost.
No multiplications in the Encode step. To ensure minimal computational
cost for encoding the results, we also wish to minimize the number of homomor-
phic multiplications. Recall, the best prior work requires O(n) multiplications
by the server. Somewhat surprisingly, we demonstrate three encoding algorithms
that can be evaluated without any homomorphic multiplications!
Using PIR (Private Information Retrieval). The asymptotic complexities
and trade-offs of the search protocols are presented in Figure 2.

In some of our protocols (i.e., the search protocols with BF-COIE and PS-
COIE; see Sections 4 and 6.3 for more detail), the indices and actual records are
fetched in separate steps. This allows us to focus on optimizing the retrieval of
the indices after which the values can be fetched using an efficient (setup-free)
PIR protocol resulting in overall savings.

However, if reliance on PIR is undesirable, we also offer a variant that fetches
the values directly (i.e., the protocol w/ BFS-CODE in Figure 2; see Sections 5
and 6.4 for more detail), as in prior work.
Implementation. We implement all of our proposed schemes and compare
their performance with that of prior work. Our experiments show that our
schemes outperform the fetching procedure of prior work by a factor of 1800X
when fetching 16 records, which results in a 26X speedup for the full search
functionality.
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3.2 Preliminaries
Let κ be the security parameter. For a vector a, let idx(a) denote the set of all
the positions i such that ai is non-zero, i.e.,

idx(a) := {i : ai ̸= 0}.

Chernoff bound. We will use the following version of Chernoff bound.

Theorem 3.1. Let X1, . . . , Xn be independent random variables taking values
in {0, 1} such that Pr[Xi = 1] = p. Let µ := Exp[

∑
Xi] = np. Then for any

δ > 0, it holds

Pr

[
n∑

i=1

Xi ≥ (1 + δ)µ

]
≤
(

eδ

(1 + δ)(1+δ)

)µ

.

FHE. We use a standard CPA-secure (leveled) fully homomorphic encryption
scheme (Gen,Enc,Dec). We refer readers to [3,181] for a formal definition. We
use JxK to denote an encryption of x.

We also use + (resp. ·) to denote homomorphic addition (resp., multiplica-
tion). For example, JcK := JaK + JbK means that homomorphic addition of two
FHE-ciphertexts JaK and JbK has been applied, which results in JcK.
PIR. A PIR protocol allows the client to choose the index i and retrieve the
ith record from one (or more) untrusted server(s) while hiding the index value
i [47].

Assume that each of the k server has n records D = (d1, . . . , dn) where all
items di have equal length. A single-round k-server PIR protocol consists of the
following algorithms:

• The query algorithms Qj(i, r) → qj for each server j ∈ [k], which are
executed by the client with input index i and randomness r.

• The answer algorithms Aj(D, qj) → aj for each server j ∈ [k], which is
executed by the jth server.

• The reconstruction algorithm R(i, r, (a1, . . . , ak))→ di.

The communication complexity of a PIR protocol is defined by the sum of the
all query lengths and answer lengths, i.e.,∑

j∈[k]

|qj |+ |aj |.

A PIR protocol is correct if for any D = (d1, . . . , dn) with |d1| = · · · = |dn|,
and for any i ∈ [n], it holds that

Pr
r

[
R
(
i, r,

{
Aj(D,Qj(i, r))

}k
j=1

)
= di

]
= 1.

A PIR protocol is private if for any j ∈ [k], for any i0, i1 ∈ [n] with i0 ̸= i1, the
following distributions are computationally (or statistically) indistinguishable:

{Qj(i0, r)}r ≈ {Qj(i1, r)}r.
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3.2.1 Bloom Filter

A Bloom filter [25] is a well-known space-efficient data structure that allows a
user to insert arbitrary keywords and later to check whether a certain keyword
in the filter.
BF.Init(). The filter B is essentially an ℓ-bit vector, where ℓ is a parameter,
which is initialized with all zeros. The filter is also associated with a set of η
different hash functions

H = {hq : {0, 1}∗ → [ℓ]}ηq=1.

BF.Insert(B, α). To insert a keyword α, the hash results are added to the filter.
In particular,

• For q ∈ [η] do the following:

Compute j = hq(α) and set Bj := 1. Here Bj is the jth bit of B.

BF.Check(B, β). To check whether a keyword β has been inserted to a BF filter
B, one can just check the filter with all hash results. In particular,

• For q ∈ [η] do the following:

Compute j = hq(β) and check if Bj is set.

• If all checks pass output "yes". Otherwise, output "no".

The main advantage of the filter is that it guarantees there will be no false
negatives and allows a tunable rate of false positives:(

1−
(
1− 1

ℓ

)ηs)η

≈
(
1− e−

ηs
ℓ

)η
,

where s is the number of keywords in a Bloom filter.
Random oracle model for hash functions. We show our analysis in the
random oracle model. That is, the hash functions are modelled as random
functions.

3.2.2 Algebraic Bloom Filter

In this work, we leverage a variant of the Bloom filter where, when inserting
an item, the bit-wise OR operation is replaced by addition. There have been
works using a similar idea of having each cell hold an integer instead of holding
a bit [75,139].

Moreover, we consider a limited scenario where the upperbound on the number
of keywords to be inserted is known beforehand. In particular, let s denote such
an upperbound.

As before, the filter is also associated with a set of η different hash functions
H = {hq : {0, 1}∗ → [ℓ]}ηq=1. However, now the filter B is not an ℓ-bit vector but
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a vector where each element is in [sη] (i.e., B ∈ [sη]ℓ) 1. Therefore, the number
of bits to encode B is now blown up by a multiplicative factor ⌈lg sη⌉.

The BF operations are described below where differences are marked by
framed boxes.
BF.Insert(B, α). To insert a keyword α, the hash results are added to the filter.
In particular,

• For q ∈ [η] do the following:

Compute j = hq(α) and set Bj := Bj + 1 .

BF.Check(B, β). To check whether a keyword β has been inserted to a BF filter
B, one can just check the filter with all hash results. In particular,

• For q ∈ [η] do the following:

Compute j = hq(β) and check if Bj is greater than 0 .

• If all checks pass output "yes". Otherwise, output "no".

It is easy to see that this variant construction enjoys the same properties as
the original BF construction.

3.3 Compressed Oblivious Encoding
As our main building block, we introduce a new tool we call Compressed Oblivious
Encoding. A compressed oblivious encoding takes as input a large, but sparse,
vector and compresses it to a much smaller encoding from which the non-zero
entries of the original vector can be recovered. What makes this encoding
oblivious is that the encoding procedure is oblivious to the original data; in fact,
in our constructions the original data will all be encrypted. An efficient encoding
must satisfy the following two performance requirements: 1) The size of the
encoding must be sublinear in the size of the original array, and 2) constructing
the encoding should be computationally cheap. Our constructions only use
(homomorphic) addition and multiplication by constant (i.e. plaintext values).

A related notion is that of compaction over encrypted data [7,23] which aims
to put all non-zero entries of a vector to the front of the encoding. Our encoding
can be viewed as a form of noisy compaction where, in addition to keeping all
the non-zero entries, it allows a small number zero entries to be mixed in with
the result. Thus, a compressed encoding trades some inaccuracy in the output
for much cheaper construction costs.

We define two variants of compressed oblivious encodings, one that encodes
the indices of non-zero entries and one that encodes the actual entries themselves.

1We can reduce sη further to Θ(η · (s/ℓ) · log(s/ℓ)) using a Chernoff bound to bound the
number of collisions contributing to the sum, but we will use sη for the sake of simplicity of
presentation.
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3.3.1 Compressed Oblivious Index Encoding

A compressed oblivious index encoding (COIE) encodes the indices or locations
of all the non-zero entries in the input array. We begin by defining the parameters
and syntax for a COIE scheme.
Parameters. A COIE scheme is parametrized as follows.

• n: Input size – The dimension of the input vector v.

• s: Sparsity – Bound on the number on non-zero entries in v.

• c: Compactness – The dimension of the output encoding.

• fp: False positives – The upperbound on the number of false positives
returned by the decoding algorithm.

Syntax. A (n, s, c, fp)-COIE scheme has the following syntax:

• Jγ1K, . . . , JγcK ← Encode(Jv1K, . . . , JvnK). The Encode algorithm takes as
input a vector of ciphertexts with vi ∈ {0, 1} for all i ∈ [n]. It outputs an
encrypted encoding Jγ1K, . . . , JγcK.

• I ← Decode(γ1, . . . , γc). The Decode algorithm takes the encoding (γ1, . . . , γc),
in decrypted form, and outputs a set I ⊆ [n]

Correctness. Let (γ1, . . . , γc)← Dec(Jγ1K, . . . , JγcK) denote a correct decryp-
tion of the encoding.

Definition 3.2. A (n, s, c, fp)-COIE scheme is correct, if the following conditions
are satisfied:

• (No false negatives) For all v ∈ {0, 1}n with at most s non-zero positions,
and for all i ∈ idx(v), it should hold

i ∈ Decode(Dec(Encode(Jv1K, . . . , JvnK)))

with probability at least 1 − negl(κ) where the random coins are taken
from Encode.

• (Few false positives) For all v ∈ Dn with at most s non-zero positions,
consider the set of false positives

E = {i ∈ [n] : vi = 0, but i ∈ I},

where I = Decode(Dec(Encode(Jv1K, . . . , JvnK))).

We require that |E| ≤ fp with the overwhelming probability over the
randomness of Encode.

Efficiency. For efficiency, we look at the following three parameters of a COIE:
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• The type and number of operations used by the Encode algorithm.

• The size of the encoding.

• The computation cost of the Decode algorithm.

For an efficient construction, we require that the latter two of these are
sublinear in the size of the input vector.

3.3.2 Compressed Oblivious Data Encoding

A Compressed Oblivious Data Encoding (CODE) scheme is very similar to COIE
except, rather than encoding the locations of non-zero entries, it encodes the
values of these entries. We give a definition of CODE below where differences
are marked by framed boxes.
Parameters. A CODE scheme is parametrized by the same four parameters
(n, s, c, fp) as a COIE.

Syntax. A (n, s, c, fp)-CODE scheme over domain D has the following syntax:

• Jγ1K, . . . , JγcK ← Encode(Jv1K, . . . , JvnK). The Encode algorithm takes as
input a vector of ciphertexts with vi ∈ D for all i ∈ [n]. It outputs an
encrypted encoding Jγ1K, . . . , JγcK.

• V ← Decode(γ1, . . . , γc). The Decode algorithm takes the encoding
(γ1, . . . , γc), in decrypted form, and outputs a set of values V = {vi : vi ̸= 0}

Correctness.

Definition 3.3. A (n, s, c, fp)-CODE scheme over domain D is correct, if the
following conditions are satisfied:

• (No false negatives) For all v ∈ {0, 1}n with at most s non-zero positions,
and for all i ∈ idx(v), it should hold

vi ∈ Decode(Dec(Encode(Jv1K, . . . , JvnK)))

with probability 1−negl(κ) where the random coins are taken from Encode.

• (Few false positives) For all v ∈ Dn with at most s non-zero positions,
consider the set of false-positive values

E = {z ∈ V : z ̸= vi for any i ∈ idx(v)} ,

where V = Decode(Dec(Encode(Jv1K, . . . , JvnK))).

We require |E| ≤ fp with the overwhelming probability over the randomness
of Encode.
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3.4 COIE Schemes
We assume the input index vector v ∈ {0, 1}n is sparse. In particular, throughout
the paper, we assume s = o(n).

3.4.1 A Warm-up construction

Using an algebraic BF, we can create an (n, s, c, fp)-COIE scheme (the parameters
c and fp will be worked out after the description of the scheme).
Encode(Jv1K, . . . , JvnK). The encoding algorithm works as follows:

1. Initialize a BF JBK := (JB1K, . . . , JBcK) with Bj = 0 for all j. Let H =
{hq : {0, 1}∗ → [c]}ηq=1 be the associated hash functions.

2. For i = 1, . . . , n:

(a) For q = 1, . . . , η, do the following: Compute j = hq(i) and set
JBjK := JBjK + JviK.

Note that at step 2.a in the above, if vi = 0, then Bj stays the same. On the
other hand, if vi = 1, then Bj will be increased by 1. This implies that B will
exactly store the results of the operations {BF.Insert(B, i) : i ∈ idx(v)}.
Decode(B1, . . . , Bc). Given the algebraic BF B, we can recover the indices for
the nonzero elements as follows:

• Initialize I to be the empty set.

• For i ∈ [n]: if BF.Check(B, i) = “yes", add i to I.

• return I.

Parameters c and fp. Since this is a warm-up construction, we perform
only a rough estimation on the false positive parameter and the compactness
parameter.

For reasons that will become clear later, we wish to keep the upper bound
on the number of false positives (fp) small. In particular, we use a BF with
false-positive rate 1/n. Since there are n operations of BF.Check, the expected
number of false positives is 1, and from the Chernoff bound, the number of
false positives is bounded by Ω(log κ) with overwhelming probability in κ. This
implies that we have fp = Ω(log κ).

The dimension c of the Bloom filter B can be computed using the following
equation of BF false positive ratio:(

1− e−
ηs
c

)η
≤ 1

n
,

Setting c = ηs · n
1
η will satisfy the equation. This can be verified by using an

equality 1− e−x ≤ x for x ∈ [0, 1]; that is, 1− e−
ηs
c ≤ ηs

c = 1/n1/η.

Efficiency.
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• The encoding algorithm uses nη homomorphic addition operations, and
nη hash functions.

• The dimension c of the encoding is ηs · n
1
η . Usually, η is set to between 2

and 32.

• The decoding algorithm uses n operations of BF.Check.

In summary, we have reduced the encoding size c to be sub-linear in n as
desired. However, we still need to reduce the number BF.Check operations
in Decode to be sub-linear in n. We show how to achieve that in our next
construction.

3.4.2 BF-COIE

We now show how to improve the above construction to achieve decoding in time
o(n). The main idea of this improvement is to use Bloom filters to represent a
binary search tree, one BF per level of the tree. We can then guide the decoding
algorithm to avoid decoding branches that do not contain non-zero entries. As
most branches can be truncated well before reaching the leaf-level Bloom filter,
this results in sublinear total cost.
Example. Before presenting the formal protocol for this construction we convey
our idea through an example. Let n = 32, and suppose we wish to encode the
indices I = {1, 15, 16}. Denote

Ik =

{⌈ i

2k

⌉
: i ∈ I

}
.

Intuitively, an element i in Ik can be thought of a range of length 2k covering
[(i− 1) · 2k + 1, i · 2k]. We have:

• I4 = {1}.

• I3 = {1, 2}.

• I2 = {1, 4}.

• I1 = {1, 8}.

• I0 = {1, 15, 16}.

Now, assume we insert each set Ik into its own BF. We can traverse these
BF’s to decode the set I as follows:

1. Check I4 for all possible indices. The only possible indices at this level are
1 and 2, since n = 32 and I4 divides the original indices by 24 = 16.

In the above example, When we query the BF for I4, it only contains the
index 1, which means that no values greater than 16 are contained in I.
We can thus avoid checking any such indices at the lower levels.
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Now consider the BF at the next level (i.e., the BF for I3). The only
possible values at this level are 1,2,3,4, but since we already know that
there are no values greater than 16 in I, we only need to check for values
1, 2 (since 3 · 8 > 16).

2. Check I3 for indices 1, 2. The BF will show that indices 1 and 2 are both
present, which means that we need to check indices 1, 2 and 3, 4 in I2.

3. Check I2 for indices 1, 2, 3, 4. The BF will show that indices 1 and 4 are
present, which means that we only need to check indices 1, 2 and 7, 8 in
I1, all other indices can be skipped.

4. Check I1 for indices 1, 2, 7, 8. The BF will show that indices 1 and 8 are
present, which means that we need to check indices 1, 2 and 15, 16.

5. Check I0 for indices 1, 2, 15, 16, and output the final present indices 1, 15, 16.

Assuming, for now, that there are no false positives, observe that this approach
checks at most 2 · |I| values at each level, and there are lg n levels. Therefore,
the decoding algorithm will check O(|I| · lg n) indices, which is sub-linear in n.
BF-COIE. We now describe our BF-COIE construction. As before, we will work
out the parameters after describing our construction. The encoding algorithm is
described in Algorithm 1.

Algorithm 1 BF-COIE.Encode(Jv1K, . . . , JvnK)
For simplicity, n and s are assumed to be powers of 2.

1. t := lg n
2s

2. For k = 0, . . . , t:

(a) Initialize JBkK = (JBk
1 K, . . . , JBk

ℓ K) := (nil, . . . , nil).

(b) Choose Hk = {hk
q : {0, 1}∗ → [ℓ]}ηq=1 at random.

(c) For i ∈ [n] and for q ∈ [η]:

i′ := ⌈i/2k⌉, j := hk
q (i
′),

If JBk
j K is nil, then JBk

j K := Jvi′K
Otherwise, JBk

j K := JBk
j K + Jvi′K

3. Output JB0K, . . . , JBtK.

Note that in steps (a) to (c) above, the warm-up construction is used to
construct BF Bk for indices Ik.

In order to reduce the size of the output encoding, we set t to be lg n
2s instead

of lg n as described previously. Note that when t is set in this way, It contains
at most n/2t = 2s possible values thus maintaining our invariant.
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Algorithm 2 BF-COIE.Decode(B0, . . . , Bt)

1. Initialize I, I0, . . . , It−1 := ∅

2. Initialize It := {1, . . . , n/2t} = [2s]

3. For k = t, t− 1, . . . , 1, and for i′ ∈ Ik:
If BF.Check(Bk, i′) is “yes", add 2i′ − 1, 2i′ in Ik−1

4. For i ∈ I0:
If BF.Check(B0, i) is “yes", add i to I

5. Output I

The decoding algorithm is described in Algorithm 2.
Useful lemma. The following lemma will be useful to analyze the parameters
c and fp.

Lemma 3.4. Consider a Bloom filter with false positive rate 1
m , where m is an

arbitrary positive integer. Suppose at most m BF.Check operations are performed
in the BF. Then, for any δ > 0, we have:

Pr[# false positives ≥ 1 + δ] ≤ eδ

(1 + δ)(1+δ)
.

The proof, by an application of the Chernoff bound, can be found in Ap-
pendix 7.1.1.

Regarding the above Lemma, we remark that setting δ = Ω(log κ), we have

Pr

[
m∑
i=1

Xi ≥ 1 + δ

]
= negl(κ).

Parameters c and fp. We set the false positive upperbound fp := Ω(log κ)
for the BF-COIE scheme. In our experiments, we set fp = 16.

Now, let m = max(2s, s + 2fp), we set the BF false positive rate to 1/m.
Recall that in the BF-COIE construction, the topmost BF Bt performs the
BF.Check operation with 2s times; see line (2) in Algorithm 2. Using the above
Lemma, the number of false positives in the top level BF Bt is at most fp with
all but negligible probability in κ. Furthermore, the index i in Bt is expanded
into two indices 2i − 1 and 2i in Bt−1. This means that the number of false
indices to be checked in Bt−1 due to the false positives in Bt is at most 2fp.

Now consider an index i that belongs to Bt. Algorithm 2 will run BF.Check
on the values 2i − 1 and 2i in Bt−1. Since at least one of these values must
actually belong to Bt−1, this leads to at most one false index being checked.
Thus, the maximum number of false indices that would be checked in Bt−1 is at
most s+2fp (i.e., 2fp from false positives of Bt and s from true positives of Bt).
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The above argument applies inductively all the way to the bottom most level,
which means that the maximum number of false indices that would be checked
in each level BF Bi will be at most s+2fp. In the end, the bottom BF will have
at most fp false positives, and the overall BF-COIE scheme will have at most fp
false positives with all but negligible probability in κ.

For the compactness parameter c, we must determine the dimension ℓ of each
BF. Recall that we set the BF false positive rate to 1/m for m = max(2s, s+2fp):(

1− e−
ηs
ℓ

)η
≤ 1

m
.

Setting ℓ = η · s ·m
1
η would satisfy the above condition, which can be verified

using an inequality 1− e−x ≤ x for x ∈ [0, 1]; that is, 1− e−
ηs
ℓ ≤ ηs

ℓ = (1/m)1/η.
Since the encoding has t+ 1 BFs, the overall compactness parameter is as

follows:
c = (t+ 1) · ℓ = O

(
η · s1+

1
η · lg n

s

)
.

Efficiency.

• The size c of encoding is O
(
η · s1+

1
η · lg n

s

)
. In our experiment, we choose

η = 2.

• The encoding algorithm uses O(η ·n·lg n
s ) homomorphic addition operations

and hash functions.

• The decoding algorithm uses BF.Check operations for O(s lg n
s ) times.

In summary, assuming s = o(n), we reduced the encoding size c to be sub-
linear in n. Moreover, we also reduced the number BF.Check operations to be
sub-linear in n.
Remark. Although this scheme has multiple BFs, the size of encoding c is
smaller than that of the warm-up scheme! This is because with multiple levels of
BFs, we can relax the false positive ratio for each BF. The encoding computation
time was increased by a multiplicative factor of lg n

s .

3.4.3 COIE Scheme Based on Power Sums

Removing false positives using power sums. We offer another encoding
scheme using quite different techniques that can eliminate the false positives of
the prior construction. To achieve this, we abandon Bloom filters, and instead
use a power sum encoding, as has been done in several works using DC-Nets for
anonymous broadcast FHE.
PS-COIE. We describe a COIE scheme based on power sums, which we call
PS-COIE. As before, we will work out the parameters after describing our
construction. The encoding algorithm is shown below.

Note that the values of ij (modulo the underlying plaintext modulus) are
publicly computable, so computing ij · JviK only requires scalar multiplication
and no homomorphic multiplication.

25



Algorithm 3 PS-COIE.Encode(Jv1K, . . . , JvnK)
1. For j = 1, . . . , s:

Compute JwjK =
∑n

i=1 i
j · JviK

2. Output Jw1K, . . . , JwsK.

Recall that vi ∈ {0, 1}. If we let I = {i : vi = 1} denote the indices of the
nonzero elements, then note that

wj =

n∑
i=1

ij · vi =
∑
i∈I

ij .

Therefore, this wj is the jth power sum of the indices. Using the power sums,
we present the decoding algorithm in Algorithm 4.

Algorithm 4 PS-COIE.Decode(Jw1K, . . . , JwsK)
1. Recall that we have wj =

∑
x∈I x

j , for j = 1, . . . , s, and we would like to
reconstruct all x’s in I.

2. Let f(x) = asx
s + as−1x

s−1 + · · ·+ a1x+ a0 denote the polynomial whose
roots are the indices in I.

3. Use Newton’s identities to compute the coefficients of this polynomial f(x):

as = 1

as−1 = w1

as−2 = (as−1w1 − w2)/2

as−3 = (as−2w1 − as−1w2 + w3)/3

...
a0 = (a1w1 − a2w2 + · · ·ws)/s

4. Extract and output the roots of the polynomial f(x).

Parameters c and fp. This COIE scheme has no false positives; that is,
fp = 0. The compactness parameter c is equal to s.
Efficiency.

• The encoding algorithm uses s · n homomorphic addition operations and
scalar multiplications2.

• The encoding consists of s ciphertexts.
2We do not count the public multiplications to produce powers of i

26



• The decoding algorithm computes coefficients in time O(s2). Roots of
degree-s polynomial can be found in time O(s3 log p), where p is the
plaintext modulus of the underlying FHE, by using the Cantor–Zassenhaus
algorithm [36].

3.5 CODE Scheme
In the previous section, we showed two constructions of COIE schemes for
encoding a vector of indices using sublinear storage. We now turn to the
construction of CODE schemes, which, instead of encoding the indices of non-
zero entries, encode the actual data values.
Simplified key-value store. To construct our CODE scheme, we first construct
an auxiliary data structure that supports the following operations:

• Init(). Initialize the data structure.

• Insert(key, value). This operation allows the user to insert an item based
on its key and value.

• Values(). Returns all values that have been inserted thus far.

This data structure is simpler than a typical key-value store since it doesn’t
need to find an individual item by key. Note, however, that this is still sufficient
to serve our purpose of constructing a CODE scheme.

3.5.1 BF Set

We now show how to instantiate a simplified key-value store using a data structure
we call a Bloom filter set (BFS) that is in turn based on the algebraic Bloom
filter presented in Section 3.2.2. To insert a pair (key, value), the Bloom filter set
stores the actual value rather than an indicator bit. Items are inserted similar
to before, by adding their value to the locations indicated by the hashes of the
key.
Input data format. For our construction we make an assumption on the
format of the inserted data. Specifically, we assume that all inserted values
contain a unique checksum (e.g., a cryptographic hash of the value). We assume
that this checksum is sufficiently long that a random sum of checksums does not
give a valid checksum except with negligible probability (as a function of κ).
Construction. We first describe the construction of the data structure. We
show below how to choose parameters in such a way that the client can extract
all the matched items from this Bloom filter, with overwhelming probability.

• BFS.Init()→ (B,H). Create an ℓ-dimensional vector B where each element
can store any possible value in the domain D. Choose a set of η different
hash functions H = {hq : {0, 1}∗ → [ℓ]}ηq=1. Initialize Bi := 0 for i ∈ [ℓ].

• BFS.Insert(B,H, key, α). To add (key, α), we add α to the values stored
at the locations indicated by the hashes of key. Specifically,
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– For q ∈ [η]:

Compute j = hq(key) and set Bj := Bj + α.

• BFS.Values(B). Initialize a set V to be the empty set. For j ∈ [ℓ], if Bj

has a valid checksum, add Bj to V . Finally, output V .

We note that, as previously proposed by Goodrich [91], it is possible to avoid
the checksum by maintaining a counter of the number of values inserted for each
location. Then, BFS.Values only returns values at locations with a counter of 1.
Parameters. We show how to set the Bloom filter parameters to guarantee
that all values can be recovered with all but negligible probability. We assume
that we know the upper bound s on the number of inserted values. We prove
the following lemma.

Lemma 3.5. If at most s values have been inserted in the BFS data structure,
then by setting η and ℓ such that

ℓ ≥ 2(sη − 1),

we can recover all s values with probability at least 1− s · (1/2)η.

Proof. Consider a (key, value) pair (ki, αi). We say that this pair has a total
collision if every hash position for the pair is also occupied by another inserted
key, value pair. In this case, αi cannot be recovered. On the other hand, if at
least one hash position has no collisions, then we can recover the value. Note
that the collision depends on the key ki but not the value αi.

For a given key ki, we define the event TCOL(ki):

TCOL(ki) = 1 if ∀q ∈ [η], ∃(k′, q′) ̸= (ki, q) : hq(ki) = hq′(k
′).

Here, k′ can be the key of any item that has been inserted in the set. Since the
set contains at most s items, there are at most s possible keys for k′. Recall also
that η hash functions are applied for each item.

Since for each ki, there are at most ηs− 1 pairs of (k′, q′)s that are different
from (ki, q), we can bound the collision probability as follows:

Pr[TCOL(ki)] ≤
(
(ηs− 1)

ℓ

)η

Thus, if we choose η and ℓ such that ℓ ≥ 2(sη − 1), we have

Pr[TCOL(ki)] ≤ (1/2)η

Taking a union bound over all s inserted values, we have

Pr[∃ki : TCOL(ki)] ≤ s · (1/2)η

.
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3.5.2 CODE Scheme Based on BF Set

In this section, we construct a CODE scheme. Recall that unlike encoding the
indices through a COIE scheme, a CODE scheme encodes data in a compressed
manner. The main idea of our construction is simulating the operations of BFS;
we call our scheme BFS-CODE.
Pre-processing the input data. As mentioned in the description of the BF
Set construction, we need to pre-process the input data so that each item is
attached with its checksum. Although a data item v is represented as a single
number, it is assumed that v can be parsed as v.val for its actual value and
v.tag for its checksum. Moreover, we assume that the checksum is long enough,
such that a random linear combination of checksums is only negligibly likely to
produce a valid checksum (i.e., |checksum| = ω(λ)).

We stress that when our CODE scheme is used for secure search, this pre-
processing can be performed locally by the client prior to encrypting his data.
Moreover, computing checksum adds only a tiny amount of overhead.
BFS-CODE. We now describe our (n, s, c, fp)-BFS-CODE construction over
domain D. As before, we will work out the parameters after describing our
construction. The encoding algorithm is shown below.

Algorithm 5 BFS-CODE.Encode(Jv1K, . . . , JvnK)
1. η = κ+ lg s; ℓ = 2(ηs− 1)

2. Initialize JBK = (JB1K, . . . , JBℓK) := (J0K, . . . , J0K).

3. Choose H = {hq : {0, 1}∗ → [ℓ]}ηq=1 at random.

4. For i ∈ [n] and for q ∈ [η]:

j := hq(i); JBjK = JBjK + JviK

5. Output JBK.

Note that at step 4 in the above, if vi is 0, then Bj stays the same. On the
other hand, if vi is not 0, Bj will be increased by vi. This implies that B will
exactly hold the result of operations {BFS.Insert(B,H, i, vi) : i ∈ idx(v)}.

The decoding algorithm is simple, and it’s described in Algorithm 6.

Algorithm 6 BFS-CODE.Decode(B)

1. Output BFS.Values(B)

Correctness. This is immediate from the additive homomorphism of the
underlying encryption scheme and the parameters for the BFS. In particular, we
set η = κ+ lg s so that the probability of recovery error is at most 2κ.
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Parameters c and fp. The checksums attached to the data items ensure that
we have no false positives with overwhelming probability, that is, fp = 0. The
compactness parameter c is the dimension ℓ of the BF, which is O(ηs).
Efficiency.

• The encoding algorithm uses ℓ = O(ηs) encryption operations, η · n.
addition operations, and ηn hash functions.

• The encoding consists of ℓ ciphertexts.

• The decoding algorithm uses ℓ decryption operations.

Since by Lemma 3.5, the size ℓ of the Bloom filter only depends on the number
of matches s and the number of hash function η, we get that the communication
complexity of the above protocol is independent of the database size n.

3.6 Secure Search Protocols
We implement secure search protocols by using compressed oblivious encoding
schemes. We begin by defining a relaxed notion of correctness that allows for
false positives, as is needed in some of our constructions. we then define security
of secure search.

3.6.1 (ℓ, fp)-Relaxed Secure Search

We relax the correctness guarantee to allow the Client to retrieve a superset of
the matching records. Specifically, if S is the set of indexes matching a Client’s
query q, then at the end of the protocol, we require the Client to obtain a set S ′
such that:

• With all but negligible probability, S ⊆ S ′

• With all but negligible probability, |S ′ \ S| ≤ fp.

We parameterize a secure search scheme by (ℓ, fp), where ℓ is the amortized
communication complexity per matching record, and fp is the number of “false
positives,” as defined above.

3.6.2 Security of Setup-free Secure Search

To define security of our secure search schemes, we use a game-based security
definition similar to that of Akavia et al. [3]. The game is between a challenger
and an adversary A with regard to a setup-free search scheme, sec-search, and
an FHE scheme, FHE.

Gamesec-searchFHE (A):

1. The challenger runs a key generation algorithm (with computational secu-
rity parameter κ) and sends the evaluation key to A so that A can perform
homomorphic additions and multiplications.
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2. A chooses either:

• Two databases x0 = (x0
1, . . . , x

0
n) and x1 = (x1

1, . . . , x
1
n) of the same

length, and a query q, or

• A single database x = (x1, . . . , xn) and two queries q0, q1 of the same
circuit size.

In both cases, we require that the sizes of the two result sets (denoted by
s) are equal.

3. The challenger samples b← {0, 1}. Then, either

• Runs Setup on input xb and the search protocol from sec-search on
input q, or

• Runs Setup on input x, and the search protocol from sec-search on
input qb.

4. A outputs a bit b′

5. We say that A has advantage

Advsec-searchFHE (A) = |Pr[b = b′]− 1/2|.

Definition 3.6. A setup-free (ℓ, fp)-secure search scheme sec-search is fully
secure if every PPT adversary A controlling the server has a negligible advantage
Advsec-searchFHE (A) ≤ negl(κ) in the game above.

3.6.3 From COIE to Secure Search

We next present our framework for obtaining Secure Search from COIE. The
intuition is likely already clear from the previous descriptions: the encrypted
client query is applied to the dataset, returning an encrypted bit vector indicating
where index matches lie. The server homomorphically computes the hamming
weight of this vector, and sends it to the client for decryption. This provides
the result set size to the Server, allowing it to encode the result vector in the
COIE.3 The encoding is sent to the client for decryption and decoding.

Because the COIE only encodes the indices, and not the data values, we
then add a PIR step to fetch the corresponding data. Note that if the COIE
scheme admits false positives, it is possible that the number of false positives,
and therefore the number of PIR queries, depends on the data, leaking something
to the Server. To fix this problem, the client pads the number of PIR queries as
follows. It fixes a bound fp on the number of false positives, and aborts if the
actual number of false positives exceeds this bound. Otherwise, the client uses
enough dummy queries to pad the number of PIR queries to s+ fp.

3We note if we don’t wish to reveal this to the server, we can use a fixed, global upper
bound, or, if it is appropriate to the application, the client can add noise to provide differential
privacy. It is also worth pointing out that prior work leaks the result set size as well.
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Algorithm 7 Secure search with a (n, s, c, fp)-COIE scheme.
1. Client runs the FHE key generation algorithm and encrypts database x =

(x1, . . . , xn) with xi ∈ {0, 1}m. It then sends JxK = (Jx1K, . . . , JxnK) and the
evaluation key to Server.

2. Client sends an encrypted query JqK.
3. Server homomorphically evaluates the encrypted query JqK on each encrypted

record. In particular, let JbK = (Jb1K, . . . , JbnK) where JbiK = Jq(xi)K. Note that
q(xi) = 1 if record i is a match and is equal to 0 otherwise.

4. Server homomorphically computes JsK =
∑n

i=1JbiK, and sends to Client for
decryption.

5. Client decrypts JsK to obtain s, and sends s to Server.

6. Server calls COIE.Encode(JbK) with sparsity parameter s, to obtain an encrypted
encoding JCK. It sends JCK to Client.

7. Client decrypts JCK into C and calls COIE.Decode(C) to obtain a set S ′ of size
s+ e indexes. If e > fp, Client aborts. Otherwise, Client adds fp − e number of
dummy indexes to S ′.

8. Client runs a PIR protocol with the Server to obtain the records corresponding
to the indexes in S ′.

Theorem 3.7. Given an FHE scheme, a (n, s, c, fp)-COIE scheme in the random
oracle model, and a PIR scheme in the random oracle model with communication
complexity ℓp for records in {0, 1}m, the construction in Algorithm 7 yields a
(ℓ, fp)-secure search scheme for records in {0, 1}m in the Random Oracle Model,
where ℓ =

c·ℓc+(s+fp)·ℓp
s , ℓc is the length of an FHE ciphertext, and s is the

number of matching records.

Proof. We begin by proving that the adversary cannot distinguish between two
different queries. The adversary chooses a database x and two queries q0 and q1,
with the promise that s =

∑n
i=1 q

0(xi) =
∑n

i=1 q
1(xi).

The entire view of the adversary during the experiment can be reconstructed
efficiently given (1) the encrypted database JxK (2) the encrypted query JqK, (3)
s+ fp iterations of the PIR protocol, requesting indexes in S ′b, where s is the
number of matching records.

Since the value of s is the same for q0 and q1, the two things that change
in the view of the adversary when switching from b = 0 to b = 1 are (1) the
encrypted query JqbK (2) the set of indexes S ′b (but not the number) requested
during the PIR step.

We also note that the experiment only aborts when the number of received
false positives e is greater than the bound fp, which only happened with probabil-
ity negl(κ) for a statistical security parameter κ. Thus, we ignore this possibility
in the following.

We can now proceed via a standard hybrid argument:

• We first consider the real experiment with b = 0.
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• We then switch the encrypted query from q0 to q1, but leave the set of
indexes in the PIR step as S ′0. Indistinguishability of the adversary’s view
follows from the IND-CPA security of the FHE scheme.

• Next, we switch the set of indexes in the PIR step from S ′0 to S ′1. Indistin-
guishability of the adversary’s view now follows from the security of the
PIR scheme. This is now identical to the real experiment with b = 1.

We conclude that the probability the adversary outputs 0 or 1 differs by a
negligible amount when b = 0 versus b = 1. Therefore, the advantage of the
adversary in guessing b is negligible.

The proof that the adversary cannot distinguish between the same query
applied to two different databases follows nearly identically.

3.6.4 From CODE to Secure Search

We next present our framework for obtaining Secure Search from CODE.

Algorithm 8 Secure search with a (n, s, c, fp)-CODE scheme.
1. Client runs the FHE key generation algorithm and encrypts database x =

(x1, . . . , xn) with xi ∈ D. It then sends JxK = (Jx1K, . . . , JxnK) and the evaluation
key to Server.

2. Client sends an encrypted query JqK.
3. Server homomorphically evaluates the encrypted query JqK on each encrypted

record. In particular, let JbK = (JbiK, . . . , JbnK) where JbiK = Jq(xi)K. Note that
q(xi) = 1 if record i is a match and is equal to 0 otherwise.

4. Server homomorphically computes JsK = ∑n
i=1JbiK and sends JsK to Client.

5. Client decrypts JsK to obtain s and sends it back to the Server.

6. Server computes JdiK = JbiK · JxiK for i ∈ [n]. Then, it applies
CODE.Encode(Jd1K, . . . JdnK) with sparsity parameter s, to obtain an encrypted
encoding JCK. It sends JCK to Client.

7. Client decrypts JCK to C and decodes C to obtain a set S of size s matching
records.

Theorem 3.8. Given an FHE scheme, and a (n, s, c, fp)-CODE scheme over
domain D in the random oracle model, the construction in Algorithm 8 yields a
(ℓ, fp)-secure search scheme for records in domain D in the random oracle model,
where ℓ = c(s)·ℓc

s , ℓc is the length of an FHE ciphertext with plaintext space D,
and s is the number of matching records.

The proof is similar to the COIE-based scheme and can be found in Ap-
pendix 7.1.2.
On the use of homomorphic multiplication. As described, our CODE-
based search scheme uses n homomorphic multiplications to create the vector
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JdK. However, it may be the case that this vector is already produced as part
of the match step, for example for arithmetic queries. In this case, our CODE
scheme requires no further homomorphic multiplications.
On volume attacks. In our secure search schemes, the client sends the number
s of matching records to the server so that the server can create an oblivious
compress encoding. One recent line of works has developed attacks using volume
leakage (e.g., [22, 98, 121]), and these types of attacks can be applied to our
scheme in theory.

In our scheme, the volume attacks can be mitigated by hiding s in a differen-
tially private manner. In particular, the client can add a small amount of noise
to s before sending it to the server. A similar approach was used in previous
work e.g., [148].

3.7 Evaluation
3.7.1 Fetch time

We implemented our search protocols based on BF-COIE, PS-COIE, and BFS-
CODE schemes. All protocols were implemented using PySEAL [174], which is a
Python wrapper of the Microsoft research SEAL library (version 3.6) [160] using
the BFV encryption scheme [74]. We instantiated a single-server PIR protocol
in our construction using SealPIR [6]. For the root finding step of the decoding
procedure in PS-COIE, we use an implementation based on SageMath 9.2 [171].
Measuring the Fetch step. Our search framework improves the overall
search time by executing the Match step only once, while the LEAF protocol
must execute the Match step s times. However, since we do not optimize the
Match step itself over prior work, we focus on measuring the cost of the Fetch
procedure. That is, our experiments measure the time from when the server
holds encrypted query results, i.e., (Jb1K, . . . , JbnK) with bi ∈ {0, 1}, to when the
client recovers all s records matching the query. Specifically, we measure the
cost of steps 4 and up in Algorithms 7 and 8. Similarly, for LEAF+, we only
measure the cost of the Fetch step.
Database. To measure the performance of our protocols, we run experiments
with database size n ranging from 1000 to 100,000 data items and the result set
size s set to between 8 and 128. As in the LEAF+ experiments [181], all data
items are 16-bit integers.
BF-COIE parameters. For the BF-COIE secure search, we set the parameters
as indicated in Section 3.4.2.

• We set the false positive upperbound fp = 16. Recall that the client aborts
(without executing the PIR) if the actual number of false positives exceeds
this, but this only happens with probability negligible in the security
parameter, which we set κ = 40.

• We set the number of hash function η = 2 for each Bloom filter, so each
BF has size ℓ = 2s ·

√
2s. (If 2s < s+ 2fp, we set ℓ = 2s ·

√
s+ 2fp).
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BFS-CODE parameters. For BFS-CODE secure search, with κ = 40, the
number of hash functions η is set to κ+ lg s, and the Bloom filter size is set to
2(ηs− 1). Additionally, each data item is attached with a 40-bit checksum to
guarantee a 2−κ probability of collision. We used SHA2 to compute a checksum.
Implementing LEAF+. For a comparison we also implemented the fetch
step of the LEAF+ protocol [181], since their implementation is not publicly
available.

Their protocol has O(log logn) depth of multiplications. Therefore, they have
to use bootstrapping techniques to reduce the accumulated noise. However, SEAL
doesn’t provide a method for bootstrapping, and we suspect that they added
a customized implementation of bootstrapping on top of SEAL. Unfortunately,
their implementation is not available.

We address this issue by choosing to ignore the time for bootstrapping when
we measure the running time of our implementation of LEAF+. Of course, our
implementation doesn’t output the correct results, but the measured running
time will be shorter than the actual running time. Therefore, we believe that
this measured time serves as a good baseline.
Experiment environments. All our experiments were performed on an
Intel®Core 9900k @4.7GHz with 64GB of memory. For fair comparison, the test
was performed on a single thread with no batching optimizations for computation.
Networking protocol between server and clients is a 1Gbps LAN.
Results: Fetch time vs. database size. Figure 3 shows the performance
of our protocols as a function of database size, while the result set size s is
fixed to 16. However, for LEAF+, we plot the time for fetching only a single
record, since fetching s records takes too long. In our implementation of LEAF+,
fetching even a single record when n = 10, 000 requires 1872 seconds. We note
that the authors of LEAF+ report about 60 seconds for a single fetch [181]. We
conjecture that they parallelize the scheme with 32 threads. Here, we only use a
single thread.

All three of our protocols greatly outperform LEAF+. Looking at BF-COIE
in particular:

• In BF-COIE search, fetching 16 records with n = 10, 000 takes 16.7 seconds,
compared to 1872 seconds for a single record fetch in LEAF+. We believe
that the speed up is due to the fact that LEAF+ (with a single-record
fetching) needs O(n logn) homomorphic additions and O(n) homomorphic
multiplications, while BF-COIE search needs only O(n log n

s ) homomorphic
additions with no homomorphic multiplications. In addition, as Figure 4
shows, the overhead of the PIR step to retrieve the actual data is small.

• Due to the sequential limitation in LEAF+, fetching 16 records with
LEAF+ is extrapolated to take about 16 · 1872 = 29952 seconds. Overall,
BF-COIE search is about 1800 times faster than LEAF+.

The time for all three of our protocols is dominated by the server’s computa-
tion during encode, which grows linearly with the DB size.
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For LEAF+, we plot the time for fetching only a single record, since fetching s

records takes too long.

Figure 3: Fetch time vs. Database size with s = 16.
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Figure 4: Fetch time vs. Result set size with n = 10, 000.

Since the number of hash functions η is larger in the BFS-CODE protocol
than in BF-COIE protocol, the encoding step of this protocol takes longer.
Results: fetch time vs. the result set size. Figure 4 shows the performance
of our protocols as a function of the result set size s while n is fixed to 10, 000.
Here, again the performance is dominated by the encoding step, but the relative
costs have changed. Due to the need to compute more power sums, the PS-
COIE protocol performs worse than BS-COIE and BFS-CODE when s becomes
moderately large.

The time used for transmitting the data over network (green in Figure 4)
increases for larger s. However, it still remains small for all three schemes. In the
scenario of having lower network bandwidth, batching is recommended to pack
a vector of ciphertexts into a single ciphertext with relatively low computation
overhead. We discuss communication costs further in Section 3.7.3.

3.7.2 Overall Running Time

Although we do not optimize the Match step itself over prior work, we provide
an estimated comparison of the running time for the end-to-end flow.

Our search framework improves the overall search time by executing the
Match step only once, while the LEAF protocol must execute the Match step s
times. Based on this, we can extrapolate the running time as follows:

• The overall running time for LEAF:

Time(LEAF) = s ·MT(LEAF) + s · FT(LEAF).
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Here, MT and FT denote the match time and fetch time respectively.

• The overall running time for the BF-COIE scheme:

Time(BF-COIE) = MT(BF-COIE) + FT(BF-COIE)

Although the implementation (nor the algorithm) of the matching step of
LEAF protocol is not available in [181], we expect that it holds MT(LEAF) ≈
MT(BF-COIE). In the experiment performed in LEAF (see Figure 9 in [181]), we
have m = MT(LEAF)

FT(LEAF) ≈ 1.5. For s = 16, setting FT(LEAF) = 1800 · FT(BF-COIE)
based on the above discussion, we can estimate the speed-up as follows:

Time(LEAF)

Time(BF-COIE)
=

s · (m+ 1)

m+ 1/1800
.

Thus, with s = 16, we estimate that our BF-COIE scheme has roughly 26X
end-to-end speed-up.

3.7.3 Communication

We now look at the communication required by each of our schemes and by
LEAF+. Figure 5 shows the network cost of the protocols when the result set
size s is 16 and the size of the database is n = 10, 000. In our implementations,
the length of an FHE ciphertext is approximately 103KB and the communication
cost of PIR is approximately 369KB.

LEAF+ BF-COIE PS-COIE BFS-CODE
#ct’s 704 1323 17 1321
#PIR 0 32 16 0
#ct’s (w/ batching) 32 2 2 2

Figure 5: The communication costs (n = 10, 000 and s = 16).

To explain this table, we first need to explain how we determined the costs
of LEAF+ and PIR.

• LEAF+. Since LEAF+ fetches each data item and the corresponding index
one by one, LEAF+ needs to 16 rounds of communication to retrieve 16
data items. Worse yet, LEAF+ requires the client to send the index of the
previous match (requiring lg n bits) in his next query to ensure correctness.
Finally, LEAF+ uses bitwise encryption requiring a ciphertext for each bit
of the encrypted communication. Thus, in a single round, the client must
send lg n = 14 ciphertexts and the server returns 16+ lg n = 30 ciphertexts
– 16 ciphertexts for returning the matching data item, and lg n ciphertexts
to return its index. This amounts to 704 ciphertexts for fetching 16 items
(excluding the query).
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• PIR costs. We reduce the cost of PIR for the COIE-based schemes by
making a slight modification. In addition to storing the FHE-encrypted
database, the server also stores a copy of each record encrypted using a
symmetric-key encryption scheme (resulting in much shorter ciphertexts).
Then, in the PIR step, the client fetches this symmetrically encrypted
ciphertext instead of the FHE-encrypted one.

We use SealPIR for our PIR protocol, which requires 368.6 KB per request.
We remark that a very recently introduced SealPIR+ takes 80KB per
request (see Table 1 in [4]), using which we can reduce the communication
further.

We can now compare the communication costs based on rows 1 and 2
of Figure 5. We see that the communication of BF-COIE and BFS-CODE
are roughly twice that of LEAF+, while PS-COIE requires almost 10X less
communication. The extra communication needed by BF-COIE and BFS-CODE
can likely be offset by the much lower round complexity required by our protocol
since the latency costs are likely higher than the cost for the extra bandwidth.
Reducing communication using ciphertext batching. We now describe
an optimization to significantly reduce the communication of our protocols at
the cost of slightly increased server computation. SEAL allows thousands of
encrypted values to be packed together into a single ciphertext. This allows us
to pack the ciphertexts in all of our protocols into just one a single ciphertext to
be sent from the server to the client. However, this does require the server to do
some additional computation to pack the ciphertexts prior to sending them. We
experimentally measured this packing, and it requires approximately 3 seconds
on a single threaded machine.

LEAF+ can also take advantage of packing to reduce the communication
of their protocols. However, since the results must be returned one at a time,
the best LEAF+ can do is to pack all ciphertexts that are sent in each round,
resulting in a total of 32 ciphertexts.

We note that the cost of PIR is unchanged by this modification. Thus, with
the packing optimization, the communication of BFS-CODE is roughly 1/16
of the communication needed by LEAF+, but BF-COIE and PS-COIE require
approximately 4X and 2X more communication than LEAF+ respectively when
SealPIR is used; however, when SealPIR+ is used, both schemes have slightly
less communication than LEAF+.

3.8 Related Work
3.8.1 Techniques for Secure Search

Secure pattern matching (SPM) on FHE-encrypted data. In SPM,
given an encrypted query JqK and n FHE-encrypted data items (Jx1K, . . . , JxnK),
it returns a vector of n ciphertexts Jb1K, . . . , JbnK, where bi indicates whether the
ith data element is a match [43,44,123,187]. Their works focus on optimizing the
search circuits to determine whether a data item matches the query, and therefore
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the communication complexity and client’s running time are proportional to the
number of data items. Our work focuses on the orthogonal problem of optimizing
the retrieval of the matched data items with sublinear communication and client
computation.
Searchable encryption (SE). Searchable encryption [29,167] allows highly
efficient search (usually in o(n) time) over encrypted data. Efficient SE schemes
have been proposed for a wide variety of queries including equality queries [41,54],
range queries [107,157], and conjunctive queries [37,147]. However, to achieve
sublinear query performance, SE schemes require significant preprocessing and
relax security, allowing some partial information about the queries and data (e.g.
access patterns) to leak to the server. For a recent survey on SE constructions
and security, see Fuller et al. [82]. In contrast, our work focuses on achieving
preprocessing-free secure constructions, leaking nothing about the queries or
results other than their sizes.
Property Preserving Encryption (PPE). As a different approach, property-
preserving encryption [146] produces ciphertexts that maintain certain relation-
ships (e.g., equality, and order) of the underlying plaintexts. This allows queries
to be performed over ciphertexts in the same way that they can be carried out
over plaintexts. Examples of PPE include deterministic encryption [19] allowing
equality queries, and order-preserving encryption [27,28] allowing range queries.
However, it has been shown [96,97,109] that such property-preserving ciphertexts
leak a lot of information about the underlying plaintexts. See [82] for a survey
of constructions and attacks.

3.8.2 General Techniques

Private information retrieval (PIR). PIR allows the client to choose the
index i and retrieve the ith record from an untrusted server while hiding the
index i [47]. However, this protocol by itself provides only a limited search
functionality requiring the client to know the index of the data to retrieve. In
this work, we aim at protocols supporting any arbitrary search functionality.
Secure multi-party computation (MPC). Secure two-party computation [88,
186] allows players to compute any function of their private inputs without
compromising privacy of their inputs. For example, the client and the server
can run a protocol for secure two-party computation to solve the secure search
problem. While there has been much progress in improving efficiency of MPC
protocols, such protocols still require Ω(n) communication and Ω(n) client
computation per query. In this work, we aim to achieve protocols with sublinear
communication and client work.
Oblivious RAM (ORAM) and Oblivious data structure (ODS). ORAM [89]
is a protocol which allows a client to store an array of n items on an untrusted
server and to access an item obliviously, that is, hiding contents and which item
is accessed (i.e., the access pattern). Likewise, ODS [180] allows the client to
store and use a data structure obliviously. One could implement secure search
by utilizing an ODS for a search tree. However, ODS constructions typically
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need Ω(log2 n) rounds for each operation. In this work, we aim at achieving a
constant round protocol.

3.9 Conclusion
We have presented several new constructions of secure search based on fully ho-
momorphic encryption. Prior constructions were inherently sequential, returning
only a single record from the result set, and requiring a new query from the
client that depended on the index of the previous match. We have demonstrated
several new methods for encoding the entire result set at one time, removing
the added rounds, and allowing the server work to be parallelized. Additionally,
we have shown that this can be done without homomorphic multiplication,
ensuring low computational cost at the server. Finally, we have implemented
our constructions, and demonstrated up to three orders of magnitude speed-up
over prior work. Additionally, we introduced the notion of compressed oblivious
encoding which may be of independent interest.

4 Secure Sampling

4.1 Introduction
Random sampling is an important tool when computing over massive data sets.
It has wide application in generating small summaries of data, and serves as a key
building block in the design of many algorithms and estimation procedures. In
particular, Lp sampling has been used to develop important streaming algorithms
such as the heavy hitters, Lp norm estimation, cascaded norm estimation, and
finding duplicates in data streams [5, 32,116,140].

In this work, we introduce and explore the problem of private two-party
sampling. We consider a setting in which two parties would like to sample
from a distribution whose probability mass function is distributed across the
two parties. Specifically, we assume parties P1 and P2 each hold n-dimensional
vectors w1 = (w1,1, . . . , w1,n) and w2 = (w2,1, . . . , w2,n) respectively where every
wb,j is non-negative. These vectors each represent a (possibly non-normalized)
probability mass function of a distribution. Specifically, for b ∈ {1, 2}, i ∈ [n], the
non-negative value wb,i

||wb||1 represents the probability mass placed by distribution
Db on element i. We assume that the dimension n is very large, and our goal is
to obtain secure sampling protocols with communication that is sub-linear in n.

We consider various ways of deriving the probability mass function D of the
joint distribution from the two individual probability mass functions. Specifically,
we consider:

• L1 distribution: Sample item i with probability w1,i+w2,i

||w1+w2||1 =
w1,i+w2,i∑
j(w1,j+w2,j)

.

• L2 distribution: Sample item i with probability (w1,i+w2,i)
2

||w1+w2||22
=

(w1,i+w2,i)
2∑

j(w1,j+w2,j)2
.
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• Product distribution: Sample item i with probability w1,i·w2,i

⟨w1,w2⟩ =
w1,i·w2,i∑
j(w1,j ·w2,j)

4.

Realizing these sampling functionalities securely is immediate via generic
2PC techniques, but the resulting protocols will require communication that is
linear in the input length. With sublinear communication, however, it is unclear
how to perform some of these tasks (or whether it is even possible to do so),
even with an insecure protocol. We give a (partial) characterization of when
such sublinear sampling is possible, and give secure protocols for realizing these
functionalities where possible.
Product sampling and the exponential mechanism. While L1 and L2

sampling are well-studied, to the best of our knowledge, we are the first to consider
the notion of product sampling. We describe a concrete, independent application
for this new notion: product sampling can be used to implement a distributed
version of the well-known exponential mechanism for differentially-private data
release [135].

4.1.1 Our Work

We explore the problems described above, providing multiple two-party protocols,
all with sub-linear communication, in the semi-honest security model. We note
that our protocol for product sampling has additional leakage, beyond what is
revealed by the sampling functionality. We characterize exactly what this leakage
is, and provide evidence that similar leakage is necessary to achieve sublinear
communication. Specifically, we show the following.
L1 sampling. We begin by constructing a two-party protocol for L1 sampling
that relies on fully homomorphic encryption (FHE). The main idea behind the
protocol is to obliviously sample from each of the two parties inputs independently,
and then to securely choose one of the two samples using an appropriately biased
coin toss. The results are described in Section 4.2.
L2 sampling. We also provide a protocol for secure L2 sampling that relies on
fully homomorphic encryption (see Section 4.3). In this case, however, achieving
L2 sampling is non-trivial. In fact, even relying on FHE, it is not immediately
clear how to compute ∥w1 +w2∥22 with sublinear communication.

Surprisingly, our L2 sampling protocol runs in constant rounds and with Õ(1)
communication5. Interestingly, it does not require us to compute ∥w1+w2∥22. To
achieve this, we developed a novel technique called “corrective sampling”, which
we overview in the next subsection. We note that our techniques straightforwardly
extend to Lp sampling, for constant p.
Product sampling. We then turn to product sampling. We assume, with-
out loss of generality, that the vectors wb are normalized (see Section 4.4 for
justification).

4Of course, if ⟨w1,w2⟩ = 0, the probability space is not well-defined, and in this case, we
require the protocol to simply output ⊥.

5Throughout the paper, we will describe the round and communication complexities using
the asymptotic notation only based on n. That is, all other parameters (e.g., security parameter)
independent on n will be suppressed in the asymptotic expressions.
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We first begin with a communication lowerbound, demonstrating that prod-
uct sampling with sublinear communication is impossible, even without pri-
vacy guarantees, if the two input distributions are insufficiently correlated (i.e.,
⟨w1,w2⟩ = o( 1

n2 )). We show this through a reduction from the Set Disjointness
problem.

Knowing this lowerbound, we consider the problem under a promise that
the input vectors are sufficiently correlated. Assuming that ⟨w1,w2⟩ = ω( logn

n ),
we provide a two-party protocol for secure product sampling leaking (at most)
the inner product of the two parties’ inputs. We note that the promise itself
leaks some information, so some leakage here is inevitable. Interestingly, we
observe that the protocol can be modified to provide a trade-off between the
communication cost and the leakage. We also discuss why this trade-off is
inherent.
Constant round product sampling. Our product sampling protocol has a
round complexity that depends on the inner product. In Section 4.5, we show
how to make our construction constant round while incurring small additional
leakage. Importantly, we must do this without computing the exact inner product
which itself requires O(n) communication [11].
Two party exponential mechanism. As mentioned previously, one important
application of product sampling is the exponential mechanism for providing
differential privacy [135]. In Section 4.6, we describe this application in detail.

For this particular application we face an additional challenge: the leakage of
⟨w1,w2⟩ that we relied on for achieving sub-linear communication in product
sampling does not preserve differential privacy. To overcome this issue, we
construct a new, differentially-private approximation for inner product, and show
how to use this for building a sub-linear communication secure computation of
the exponential mechanism.

4.1.2 Technical Overview

In the following, we overload notation and let D denote a distribution as well
as its probability mass function. As discussed previously, we consider the case
where a probability mass function is distributed across two parties, and the
parties would like to securely sample from the corresponding distribution. We
consider several ways in which the probability mass function can be distributed
across the two parties.
L1 sampling of convex combinations. In this case, party 1 (resp. party
2) holds a vector w1 (resp. w2), indexed from 1 to n. For i ∈ [n], w1,i/||w1||1
(resp. w2,i/||w2||1) corresponds to the probability mass of i under distribution
D1 (resp. D2). The goal of the parties is to sample from the distribution D,
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defined as follows for i ∈ [n]:

D[i] := ||w1||1
||w1||1 + ||w2||1

· w1,i

||w1||1
+

||w2||1
||w1||1 + ||w2||1

· w2,i

||w2||1

=
||w1||1

||w1||1 + ||w2||1
· D1[i] +

||w2||1
||w1||1 + ||w2||1

· D2[i]

Note that the target distribution D is a convex combination of the distributions
D1 and D2 held by the two parties.

A potentially straightforward sampling protocol is to therefore have party
1 locally draw a sample i1 from D1, party 2 locally draw a sample i2 from D2,
and then run a secure two party computation that outputs i1 with probability

||w1||1
||w1||1+||w2||1 and i2 with probability ||w2||1

||w1||1+||w2||1 .
This protocol clearly has sublinear communication, but it unfortunately does

not securely realize the ideal functionality. The reason is as follows: conditioned
on the ideal functionality outputting a certain index i∗, the probability that i∗

was drawn by party 1 (resp. party 2) is w1,i∗
w1,i∗+w2,i∗

(resp. w2,i∗
w1,i∗+w2,i∗

). Thus, if
the simulator receives i∗ from the ideal functionality and has to simulate the
view of party 1, it needs to set i1 = i∗ with probability w1,i∗

w1,i∗+w2,i∗
and set i1 ≠ i∗

with probability w2,i∗
w1,i∗+w2,i∗

. However, the simulator is not able to simulate these
probabilities correctly, since it does not know w2,i∗ .

To get around this issue we therefore have the parties sample i1 and i2 obliv-
iously. To do this with sublinear communication, we can use fully homomorphic
encryption (FHE). Specifically, to sample i1, player 1 first encrypts his input w1

using an FHE scheme for which he does not know the secret key. The players
then jointly choose a random value r ∈ [0, ||w1||1). Player 1 then uses the
homomorphic operations to find the value i1 chosen by this r, and the parties
use threshold decryption to recover a secret sharing of i1. The parties reverse
roles to sample i2. Details of this construction are provided in Section 4.2.

Additionally, an alternative construction that uses sub-linear OT for the
oblivious sampling is provided in Section 7.2.3.
L2 Sampling of component-wise sum. In this case, party 1 (resp. party 2)
holds a vector w1 (resp. w2), indexed from 1 to n. For i ∈ [n]. The goal of the
parties is to sample from the distribution D defined as follows for i ∈ [n]:

D[i] := (w1,i + w2,i)
2

||w1 +w2||22
.

We present a protocol that samples from this distribution with Õ(1) com-
munication. This protocol relies on a novel technique that we call “corrective
sampling”, which is an interesting type of rejection sampling. In what follows,
we describe an insecure version of our protocol to give the intuition behind it.
To make it secure, we carry out the corrective sampling under FHE as described
in Protocol 12.

The main challenge that we face here, unlike in the case of L1 sampling,
is that it is impossible to compute ||w1 + w2||22 (and therefore impossible to
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compute D[i] for each i) with sublinear communication [11]. Instead, we sample
index i from a different, related, distribution, which is easy to sample with
sub-linear communication. We then show that we can efficiently correct this
distribution by rejecting with the appropriate probability. Interestingly, we show
that corrective rejection, which depends on the index i, doesn’t require us to
explicitly compute ||w1 +w2||22. In fact, the parties never learn the corrective
term at all!

First, as in rejection sampling, corrective sampling proceeds in trials and
in each trial, for every i, the probability that the protocol successfully samples
index i is α ·D[i] for some unknown constant 0 < α < 1. Since the same constant
α is applied to every index i, by repeating the trials, the protocol samples index
i correctly without skewing the distribution D. The expected number of trials is
1/α. We therefore need to keep 1/α ∈ O(1) to reach our target communication
complexity.

As mentioned above, we observe that the protocol never has to explicitly
compute α. Towards describing how this is done, first note that in D[i], the
denominator, ||w1+w2||22 – which we assume for purposes of this exposition is at
least 1 – is the same for every i, so it can be pushed into α without impacting the
discussion above: letting α′ = α/(||w1 +w2||22), it suffices to implement rejection
sampling with a protocol that samples index i with probability α′ · (wi,1 +wi,2)

2

= α · D[i]. This protocol would only need to explicitly compute (wi,1 + wi,2)
2

(which can be done efficiently given i), but not α′.
Unfortunately, this does not quite work. ||w1+w2||22 can be very large, which

would then make 1/α′ large. We therefore must combine the above with another
idea to ensure that our corrective term introduces at most a O(1) overhead.

We achieve this by having each trial of the protocol work as follows:

1. It samples index i from distribution Dignore, which is easy to sample. We
note that the contribution of this distribution will be eventually canceled
out through rejection. In particular, we choose the following distribution
for Dignore:

Dignore[i] :=
w2

1,i + w2
2,i

denom
,

where we set denom = ||w1||22+||w2||22 to make the distribution well-defined.
Note that denom can be computed with Õ(1) communication.

2. After sampling i from Dignore, the protocol computes a “corrective bias”
for a coin flip that is dependent on (w1,i + w2,i)

2. We stress that once i
is determined, computing (w1,i + w2,i)

2 is easy. In particular, a coin is
flipped with the following bias:

Pr[coin|i] := (w1,i + w2,i)
2

2 · Dignore[i] · denom

Overall, this makes sure that the probability that each trial outputs index i is

Dignore[i] · Pr[coin|i] =
(w1,i + w2,i)

2

2 · denom
= αD[i],
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where α =
||w1+w2||22
2·denom .

To conclude that this is a valid and efficient sampling procedure, we need to
show the following:

• α must be less than 1 for the procedure to be valid. This is implied by the
fact that ∥w1 +w2∥22 ≤ 2 · denom.

• 1/α must be in Õ(1) so that the procedure is efficient. We have 2 ·denom ≤
2∥w1+w2∥22, which implies that α is at least 1/2. So, the expected number
of trials is at most 2.

We extend our techniques to the setting of Lp sampling for constant p in
Section 4.3.3.
Product sampling. In this case, party 1 (resp. party 2) holds a normalized
vector w1 (resp. w2), indexed from 1 to n. For i ∈ [n], w1,i (resp. w2,i)
corresponds to the probability mass of i under distribution D1 (resp. D2).6 The
goal of the parties is to sample from the distribution D defined as follows for
i ∈ [n]:

D[i] := w1,i · w2,i

⟨w1,w2⟩
.

We begin by noting (via a simple reduction from Set Disjointness) that it
is impossible to achieve sublinear product sampling when no restrictions are
placed on the inputs w1,w2. We further show (via a more complex reduction
from Set Disjointness) that for every protocol Π (parametrized by dimension
n) that correctly samples from D, there are inputs w1 := w1(n),w2 := w2(n),
with ⟨w1,w2⟩ ∈ Ω(1/n2), that require linear communication complexity. See
Section 4.4.1 for details.

This means that in order to achieve sublinear communication complexity,
we would need–at the minimum–a promise on the inputs that guarantees that
⟨w1,w2⟩ ∈ ω(1/n2). We then present a protocol that has the following properties:

• When ⟨w1,w2⟩ ∈ ω(log n/n), the protocol achieves expected communica-
tion logn

⟨w1,w2⟩ .

• The execution of the protocol leaks nothing more than the sampled output,
and ⟨w1,w2⟩. This is formalized via an Ideal/Real paradigm simulation,
in which the simulator receives leakage of ⟨w1,w2⟩ in the Ideal world.

The idea for the protocol is the following. The protocol proceeds in rounds: in
round j, party 1 and 2 obliviously sample values i1, i2 from D1,D2, respectively
(as described for L1 sampling). Then the parties run a secure protocol that
checks whether i1 = i2. If yes, they output i1. Otherwise, the parties repeat the
process in the next round.

The main technical portion of our security analysis is to show that the number
of rounds (which is the only information leaked) is distributed as a geometric
distribution with success probability ⟨w1,w2⟩. This implies that the expected

6Here the assumption that w are normalized is without loss of generality.
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number of rounds is 1/⟨w1,w2⟩, and furthermore, it implies that a simulator
who knows ⟨w1,w2⟩ can simulate the terminating round by making a draw
from this geometric distribution. See Section 4.4.2 for more details. There, we
also describe how we can pad the communication cost to the worst-case, which
depends on the given promise, thereby removing the leakage of ⟨w1,w2⟩.
Product sampling in constant rounds. The protocol presented above for
product sampling required a large number of rounds stemming from the iterative
rejection sampling procedure. We now consider how to parallelize this process.
To do so, we need to compute the inner product in order to determine, a priori,
how many samples will suffice. However, computing this value requires O(n)
communication [11]!

The natural thing to do is therefore to use an approximation to the inner
product that can be computed with sublinear communication. However, when
replacing an exact computation of a function f(w1,w2) with an approximation
f̃(w1,w2; r), one needs to be careful that more information is not leaked by
the output. Specifically, Ishai et al. [76, 77] introduced the notion of secure
multiparty computation of approximations and, loosely speaking, their security
definition says that the approximate computation is secure if its output can be
simulated from the exactly correct output. While our result falls slightly short
of that definition, we are still able to give a rigorous guarantee on the amount of
additional information leaked by our approximate functionality. Specifically, we
present an approximate functionality f̃ and prove that the output of f̃(w1,w2; r)
can be simulated given both the exactly correct output f(w1,w2) (where f is
the inner product), as well as the L2 norms of the individual inputs.

To achieve this, we use a sublinear protocol from the Johnson-Lindenstrauss
Transform (JLT) to approximate the dot product of the input vectors. This
can be done with sublinear communication by having the parties jointly sample
a k × n JLT matrix M for k ≪ n by choosing a short seed and expanding it
under FHE. The rest of the computation is then done by communicating vectors
Mwb, which are of length k rather than n. Based on this approximation, the
parties can obliviously pre-sample a number of inputs that is sufficient with all
but negligible probability, and then input them into a constant round secure
computation protocol.

Our contribution here, is to show that this variant protocol only requires
additional leakage of ||w1||22, ||w2||22, beyond what is already leaked by the original
protocol (i.e., the inner product). Our analysis may be of independent interest,
since it shows that given ⟨w1,w2⟩, ||w1||22, ||w2||22, the values Mw1 and Mw2

can be efficiently sampled from exactly the correct distribution, when M is a JLT
matrix, and is kept private from both parties. We prove this result by analyzing
the underlying joint multivariate normal distributions corresponding to Mw1

and Mw2, and showing that the mean and covariance (which fully determine
the distribution) depend only on the values ||w1||2, ||w2||2, and ⟨w1,w2⟩ See
Section 4.5 for more details.
Applications to distributed exponential mechanism. We first briefly de-
scribe the connection between product sampling and the exponential mechanism.
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Ignoring many details, the joint exponential mechanism M outputs a value i on
input X = (x1, . . . , xn) with probability proportional to

wi = ec·f(xi) = ec·f(x1,i+x2,i),

where c is some constant, f is some scoring function, and the data values xi are
partitioned between the two parties (as x1,i, x2,i). If the scoring function f is
linear, it holds that f(x1,i+x2,i) = f(x1,i)+f(x2,i), and, letting wb,i = ec·f(xb,i),
we can rewrite wi as follows:

wi = w1,i · w2,i.

Therefore, using product sampling, the parties can sample each item i with
probability proportional to wi.

Based on this connection, we present an application of our constant-round,
product sampling protocol to realize a two-party exponential mechanism in
Section 4.6. However, to use our sampling protocol in this application, we
must show that the leakage of our protocols preserves the differential privacy
guarantee. We indeed prove that our constant-round JLT-based protocol can
achieve differential privacy—even when the JLT matrix M is public—by adding
correctly distributed noise to ⟨Mw1,Mw2⟩. This allows parties to execute the
exponential mechanism when the cost function is additively distributed across
the two parties, with sublinear communication, in the case that ⟨w1,w2⟩ ∈
ω(logn/n).

4.1.3 Related Work

Sampling from streaming data. Many prior papers (e.g. [49,83,115,140,182])
have studied the problem of sampling data from a data stream. In this setting
the goal is to achieve Lp sampling for arbitrary p without having to process or
store all the streaming data, thus requiring sublinear computation. These works
generally operate in the one-party setting and do not consider privacy.
Secure multiparty sampling. A few prior works [153,154] have investigated
the problem of two and multi-party private sampling in the information theoretic
setting. These works focus on identifying the necessary setup to enable sampling
from various distributions. We instead focus on the computational setting, and
focus on reducing communication. Recently, Champion et al. [39] also considered
the computational setting, but they focus on sampling from a publicly-known
distribution whereas we sample from a private one.
Secure multiparty computation of differentially private functionali-
ties. Starting with the work of Dwork et al. [62] there has been a good amount
of work (e.g. [1,48,70,93,149,152]) on using MPC to realize differentially private
functionalities to protect the privacy of individual inputs given the output of the
MPC. These works have focused on building efficient, private applications in ma-
chine learning and other fields, whereas we focus on reducing the communication
necessary for the specific functionalities of sampling.
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Secure sketching. A long line of work [45,69,112,136,178] has investigated
building secure sketches for securely estimating statistics of Tor usage, web traffic,
and other applications. These works focus on building sublinear communication
and computation protocols for computing specific statistics such as unique count,
median, etc.

4.2 Two-party L1 Sampling
In this section, we describe a secure two-party L1 sampling protocol. Given two
n-dimensional vectors w1 = (w1,1, . . . , w1,n) and w2 = (w2,1, . . . , w2,n) as the
private inputs from parties P1 and P2 respectively, the protocol samples from
the L1 distribution according to w1 +w2.
Notation: Lp norm. Let w = (w1, . . . , wn) ∈ Rn be a non-zero vector. The

Lp norm ∥w∥p of w is defined as ∥w∥p :=
(∑

j |wj |p
)1/p

. When there is no
subscript, it means L2 norm; that is, ∥w∥ := ∥w∥2
Assumptions. Throughout the paper, we assume that the values wb,i are
represented by fixed-point precision numbers, and consider the cost of communi-
cating such a number to be independent of n. We assume all weights in vectors
w1 and w2 are non-negative.
Ideal functionality. We first define an ideal functionality for the two-party L1

sampling. Slightly abusing the notation, let L1(w1,w2) be a two-input sampling
procedure based on the L1 distribution of w1 +w2:

Pr[L1(w1,w2) samples i] =
w1,i + w2,i

∥w1 +w2∥1
.

We give a more formal description of the functionality FL1 in the figure below.
In Section 4.2.2, we present a protocol that securely realizes this functionality.

FL1 : Ideal functionality for two-party L1 sampling

The functionality has the following parameter:

• n ∈ N. The dimension of the input weight vectors w1 and w2.

The functionality proceeds as follows:

1. Receive inputs w1 and w2 from P1 and P2 respectively.

2. Sample i ∈ [n] with probability w1,i+w2,i

∥w1+w2∥1
3. Send i to P1 and P2.

4.2.1 A toy protocol towards securely realizing FL1

We describe our first attempt, which is insecure, but provides good intuition on
how we construct a secure protocol. In fact, the attack on this broken protocol,
as well as the fix presented in the next sub-section, remain relevant when we
move to product sampling and L2 sampling as well. Since we assume that all the
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weights are non-negative, we observe that letting p = ∥w1∥1
∥w1∥1+∥w2∥1 , the above

measure can be re-written as follows:

Pr[L1(w1,w2) samples i] =
w1,i

∥w1∥1
· p+ w2,i

∥w2∥1
· (1− p). (1)

Equation (1) leads us to the following natural approach.

1. Party P1 samples i1 from the L1 distribution according to w1, such that
Pr[P1 samples i1] =

w1,i1

∥w1∥1 .

2. Party P2 samples i2 from the L1 distribution according to w2, such that
Pr[P2 samples i2] =

w2,i2

∥w2∥1 .

3. Then, P1 and P2 execute a secure protocol for the following procedure:

(a) Execute a coin toss protocol with bias p. Let b be the output of the
coin-flip.

(b) If b = 0 (resp., b = 1), output i1 (resp., i2).

The output of the protocol will achieve correct sampling.
Insecurity of the protocol. However, this protocol has a subtle security issue.
For example, let i be the eventual output index of the protocol. Then, we have
the following:

• If the coin flip b is 0, which happens with probability p, it holds that i is
always the same as i1.

• On the other hand, if the coin flip b is 1, then i will be the same as i1 if
and only if i2 = i1, which happens with probability w2,i1

∥w2∥1 .

This implies that we have

Pr[i = i1|i1] = p+ (1− p) · w2,i1

∥w2∥1

Now consider a distinguisher that corrupts P1, chooses inputs w1 and w2, and
checks the above conditional probability, which is possible since the distinguisher
can also see i1 through the corrupted P1. To prove security, we should be able to
construct a simulator for P1 that fools this distinguisher. However, a simulator
for P1 doesn’t know w2, which causes the above conditional probability to be
unsimulatable.

In a sense, by having P1 choose i1, the protocol allows P1 to measure the
conditional probability Pr[i = i1|i1], which depends on the value w2,i1 thereby
leaking information about P2’s input to P1.
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4.2.2 Secure L1 sampling protocol

Oblivious sampling. We address the insecurity of the toy protocol by having
the parties sample obliviously from w1, w2. This way, each party would not
know whether the final output index matches the sample taken from its own
vector, or the sample taken from the other party’s vector. Specifically, we will
construct our protocol under the framework described below:

1. The parties obliviously sample i1 according to L1 distribution of w1. The
output index i1 is secret shared between the two parties. Let ⟨i1⟩ denote
the secret share of i1. Likewise, they obliviously sample ⟨i2⟩ from L1

distribution of w2.

2. Execute a secure two-party protocol to compute the following:

(a) Flip a coin b with bias p.

(b) If b = 0, output the decryption of i1; otherwise output the decryption
of i2.

Ideal functionalities. Formally, we define an ideal functionality Fosample(L1)

as follows:

Fosample(L1): Ideal functionality for oblivious L1 sampling.

The functionality considers two participants, the sender and the receiver. The
functionality is parameterized with a number n.

Inputs: The sender has an n-dimensional weight vector w. The receiver has
no input.

The functionality proceeds as follows:

1. Receive w from the sender.

2. Sample i ∈ [n] with probability wi
∥w∥1

3. Choose a random pad π ∈ {0, 1}ℓ, where ℓ = ⌈log2 n⌉.
4. Send π to the sender and i⊕ π to the receiver.

We also give an ideal functionality FbiasCoin for the biased coin tossing.

FbiasCoin: Ideal functionality for biased coin tossing.

The functionality considers two participants P1 and P2 and proceeds as follows:

1. Receive a number s1 as input from P1 and s2 from P2.

2. Flip a coin b with bias p = s1
s1+s2

.

3. Choose a random bit r ∈ {0, 1}.
4. Send r to P1 and r ⊕ b to the receiver.

L1 sampling protocol. Based on the above functionalities, we describe a
protocol securely realizing FL1

in the (Fosample(L1),FbiasCoin)-hybrid.
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Protocol 9 Two-party L1 sampling in the (Fosample(L1),FbiasCoin)-hybrid.
Inputs: Party Pb has input wb.

1. Execute Fosample(L1) with P1 as a sender with input w1 and P2 as a receiver.
Let ⟨i1⟩ be the secret share of the output index.

2. Execute Fosample(L1) with P2 as a sender with input w2 and P1 as a receiver.
Let ⟨i2⟩ be the secret share of the output index.

3. Execute FbiasCoin where P1 has input ∥w1∥1 and P2 has input ∥w2∥1. Let
⟨b⟩ be the secret share of the output bit.

4. Execute F2PC for the following circuit:

(a) Input: ⟨i1⟩, ⟨i2⟩, ⟨b⟩.
(b) Output: i1 · (1− b) + i2 · b.

Theorem 4.1. Protocol 9 securely realizes FL1
with semi-honest security in

the (Fosample(L1),FbiasCoin)-hybrid.

The proof is found in Section 7.2.2.
Securely realizing Fosample(L1) with threshold FHE. The main idea of the
protocol is having the parties securely sample a random number r from [s], where
s := ∥w∥1. Our construction is found in Protocol 10.

Theorem 4.2. Assuming the existence of threshold FHE with IND-CPA security,
Protocol 10 securely realizes Fosample(L1) in the semi-honest security model.

The proof is found in Section 7.2.2.
We note that we give another construction that relies on sub-linear 1-out-of-m

oblivious transfer (OT), but requires computation that is exponential in the bit
precision in Section 7.2.3.
Securely realizing FbiasCoin. The secure construction for FbiasCoin is straight-
forward and can be found in Section 7.2.1.

4.3 Two Party L2 Sampling
In this section we consider the two-party L2 sampling functionality. Given input
vectors w1,w2, this functionality samples from the distribution DL2

(w1,w2)
with the following probability mass function:

Pr[DL2(w1,w2) samples i] =
(w1,i + w2,i)

2∑
j(w1,j + w2,j)2

=
(w1,i + w2,i)

2

∥w1 +w2∥22
.

We begin by presenting a non-private protocol for two-party L2 sampling with
Õ(1) communication in Section 4.3.1, the construction is found in Protocol 11.
We then show how to implement the protocol securely in Section 4.3.2.
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Protocol 10 Oblivious sampling from threshold FHE
Inputs: The sender has input w = (w1, . . . , wn).

1. The sender computes s := ∥w∥1.

2. The sender and the receiver execute F2PC to uniformly sample r from the
range [0, s). This is possible, since s has a fixed point representation. Let
r1 and r2 be the secret share of r given to P1 and P2 respectively.

3. The sender and the receiver set up a threshold FHE scheme. The plaintext
space of the FHE is GF (2), which allows homomorphic bitwise-xor and
bitwise-AND operations. Let JmK denote an FHE encryption of plaintext
m which can be a bit or bits depending on the context.

4. The receiver sends Jr2K so that the sender can compute JrK := Jr1K⊕ Jr2K.

5. The sender homomorphically evaluates the following circuit:

(a) Let cnt0 = 0. For j = 1, ..., n, let cntj = cntj + wj .

(b) Output i ∈ [1, n] such that r ∈ [cnti−1, cnti].

Let JiK be the output encryption from the above homomorphic evaluation.

6. The sender chooses a random pad π, and then it sends JcK = JiK⊕ JπK to
the receiver.

7. The two parties perform threshold decryption so that c is decrypted to the
receiver.

8. The sender outputs π and the receiver outputs the decryption of c.
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4.3.1 A non-private L2 sampling protocol with Õ(1) communication

We begin by defining and showing how to sample from a helper distribution
Dignore.

Definition 4.3. For input vectors w1,w2, let Dignore(w1,w2) be the distribution
that “ignores” the cross term in DL2

(w1,w2). I.e. Dignore(w1,w2) samples index

i ∈ [n] with probability w2
1,i+w2

2,i

||w1||22+||w2||22
.

Lemma 4.4. There exists a protocol Πignore for sampling from Dignore(w1,w2)

with Õ(1) communication.

Proof. Let w′b = (w2
b,1, . . . , w

2
b,n). The lemma follows by observing the following:

Dignore(w1,w2) = DL1(w
′
1,w

′
2).

Definition 4.5. For i ∈ [n], let the corrective parameter function be defined as

fc(w1,w2, i) :=
w2

1,i + 2w1,iw2,i + w2
2,i

||w1||22 + ||w2||22
.

Definition 4.6. The constant c := c(w1,w2) is defined as

c(w1,w2) :=
||w1 +w2||22
||w1||22 + ||w2||22

This ensures that for every i, fc(w1,w2, i) = c · PrDL2
(w1,w2)[i].

The following lemma will be useful for arguing the validity of the final
protocol.

Lemma 4.7. For all i ∈ supp(DL2
(w1,w2)), PrDL2

(w1,w2)[i] ≤ 2/c·PrDignore(w1,w2)[i].

Proof.

Pr
DL2

(w1,w2)
[i] =

w2
1,i + 2w1,iw2,i + w2

2,i

||w1||22 + 2⟨w1,w2⟩+ ||w2||22

=
w2

1,i + 2w1,iw2,i + w2
2,i

c · (||w1||22 + ||w2||22)

≤
2 · (w2

1,i + w2
2,i)

c · ||w1||22 + ||w2||22

=
2

c
· Pr
Dignore(w1,w2)

[i]
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The inequality holds since

2(w2
1,i + w2

2,i)− (w2
1,i + 2w1,iw2,i + w2

2,i) = w2
1,i − 2w1,iw2,i + w2

2,i

= (w1,i − w2,i)
2

≥ 0.

We now present the L2 sampling protocol ΠL2 , which is described in Proto-
col 11. We show the correctness and efficiency of the protocol.

Protocol 11 Protocol for exact L2 sampling (ΠL2
)

Inputs: Parties P1 and P2 have inputs w1 and w2 respectively.

The protocol proceeds as follows:

1. Parties run Πignore with inputs w1,w2 that samples from Dignore(w1,w2)
and obtain output i.

2. For b ∈ {1, 2}, Pb sends wb,i, ||wb||22. Both parties compute

Pr
Dignore(w1,w2)

[i] =
w2

1,i + w2
2,i

||w1||22 + ||w2||22
and fc(w1,w2, i) =

w2
1,i + 2w1,iw2,i + w2

2,i

||w1||22 + ||w2||22

3. Parties output i with probability

fc(w1,w2, i)

2 · PrDignore(w1,w2)[i]
=

c · PrDL2
(w1,w2)[i]

2 · PrDignore(w1,w2)[i]

=
PrDL2

(w1,w2)[i]

2/c · PrDignore(w1,w2)[i]

and otherwise return to step 1.

Lemma 4.8. With all but negligible probability, on inputs w1,w2, ΠL2
samples

exactly correctly from DL2
(w1,w2), and has communication Õ(1).

Proof. Note that ΠL2 simply performs rejection sampling in a distributed setting
where sampling from Dignore(w1,w2) and computing the probabilities is done in
a distributed manner. It is therefore well-known that as long as for all i ∈ [n],

Pr
DL2

(w1,w2)
[i] ≤ 2/c · Pr

Dignore(w1,w2)
[i], (2)

then ΠL2
samples from the exact correct distribution, and the number of samples

required from Dignore(w1,w2) in protocol ΠL2
follows a geometric distribution

with probability c/2. Thus, if condition (2) is met, the protocol samples exactly
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correctly and completes in an expected 2/c (with 2/c ≤ 2, since c ≥ 1) number
of rounds. Further, it can be immediately noted that condition (2) is met due
to Lemma 4.7. Finally, each round has Õ(1) communication, since Πignore has
communication Õ(1) (by Lemma 4.4) and since, in addition to that, only a
constant number of length Õ(1) values are exchanged in each round. Combining
the above, we have that ΠL2

has expected communication Õ(1) and worst case
(with all but negligible probability) communication Õ(1).

Remark 4.9. Note that the protocol and analysis above did not require that
vectors w1,w2 are normalized. I.e. we do not require that ||w1||1 or ||w2||1 are
equal to 1 or to each other.

4.3.2 Secure L2 Sampling From FHE

L2 sampling protocol. We present our secure L2 sampling protocol in
Protocol 12. For two n-dimensional vectors w1 and w2, we denote by w1 ⊙w2

the n-dimensional vector whose i-th entry is equal to w1,i · w2,i.
Our L2 sampling protocol uses ideal functionality Fss

L1
, which works essentially

the same as FL1 except that the output index is secret shared among both parties.
We can securely realize this functionality with semi-honest security through a
trivial change in the protocol ΠL1

; for the sake of completeness, we provide the
details in Section 7.2.4.
Efficiency and correctness. It is clear that the total communication com-
plexity of the protocol is Õ(1), since each step in the loop has complexity Õ(1)
and the loop iterates B ∈ Õ(1) number of times. Correctness is also immediate,
since the protocol simply implements the ΠL2 sampling procedure, which was
proven in Section 4.3.1 to be correct, and to require at most B ∈ Õ(1) samples,
with all but negligible probability,
Security. Security of our protocol is stated through the following theorem.

Theorem 4.10. Assuming the existence of threshold FHE with IND-CPA security,
Protocol 12 securely realizes the L2 sampling functionality in the {Fss

L1
,F2PC}-

hybrid model with semi-honest security.

We provide the proof in Section 7.2.2.

4.3.3 A non-private Lp sampling protocol with Õ(1) communication

In this section we present a Õ(1) sampling protocol for Lp sampling for constant
p. We present only the insecure version, extending it to a secure sampling
protocol can be done entirely analogously to the construction for L2 sampling
given in Section 4.3.2.

Given input vectors w1,w2, Lp sampling refers to sampling from the distri-
bution DLp

(w1,w2) with the following probability mass function:

Pr[DLp(w1,w2) samples i] =
(w1,i + w2,i)

p∑
j(w1,j + w2,j)p

=
(w1,i + w2,i)

p

∥w1 +w2∥pp
.
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Protocol 12 Two-party L2 sampling in the (FL1 , F2PC)-hybrid.
Inputs: Party Pb has input wb.

1. Let B ∈ Õ(1). The parties perform the following steps for j ∈ [B]:

(a) Sample from Dignore(w1,w2) by doing the following: Invoke ideal
functionality Fss

L1
with P1’s input set to w1 ⊙w1 and P2’s input set

to w2 ⊙w2. Let ⟨ij⟩ be the secret share of the output index.

(b) Parties compute encryptions of w1,ij , w2,ij using a threshold FHE
scheme as follows.

• Parties compute an encryption of ij by exchanging encryptions
of their shares and adding them.

• Party b encrypts wb and uses FHE to locally compute an encryp-
tion of wb,ij .

• The parties then send these ciphertexts to each other.

(c) Rejection Sampling. Compute a threshold FHE ciphertext b̂iasj that
encrypts

fc(w1,w2)ij
2 · PrDignore(w1,w2)[ij ]

=
w2

1,ij
+ 2w1,ijw2,ij + w2

2,ij

2(w2
1,ij

+ w2
2,ij

)
.

Invoke ideal functionality F2PC that takes encrypted bias b̂iasj , the
threshold decryption keys, index ij , and random bits. The functional-
ity executes a circuit that flips a coin with bias b̂iasj and returns a
ciphertext ôutj , which is an encryption of ij if the coin evaluates to 1
and an encryption of 0 otherwise.

2. Execute F2PC for the following circuit:

(a) Input: (ôut1, . . . , ôutB) and threshold decryption keys.

(b) Output: ij corresponding to the minimum j such that ôutj decrypts
to ij ̸= 0. Or ⊥ if no such j ∈ [B] exists.
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Protocol 13 Protocol for exact Lp sampling (ΠLp)

Inputs: Parties P1 and P2 have inputs w1 and w2 respectively.

The protocol proceeds as follows:

1. Parties run Πignore with inputs w1,w2 that samples from Dignore,p(w1,w2)
and obtain output i.

2. For b ∈ {1, 2}, Pb sends wb,i, ||wb||pp. Both parties compute

Pr
Dignore,p(w1,w2)

[i] =
wp

1,i + wp
2,i

||w1||pp + ||w2||pp
and fc(w1,w2, i) =

(w1,i + w2,i)
p

||w1||pp + ||w2||pp

3. Parties output i with probability

fc(w1,w2, i)

2p−1 · PrDignore,p(w1,w2)[i]
=

c · PrDL2
(w1,w2)[i]

2p−1 · PrDignore,p(w1,w2)[i]

=
PrDL2

(w1,w2)[i]

2p−1/c · PrDignore,p(w1,w2)[i]

and otherwise return to step 1.

We begin by defining and showing how to sample from a helper distribution
Dignore,p.

Definition 4.11. For input vectors w1,w2, let Dignore,p(w1,w2) be the distribu-
tion that “ignores” the cross term in DLp

(w1,w2). I.e. Dignore,p(w1,w2) samples

index i ∈ [n] with probability
wp

1,i+wp
2,i

||w1||pp+||w2|pp .

Lemma 4.12. There exists a protocol Πignore for sampling from Dignore,p(w1,w2)

with Õ(1) communication.

Proof. Let w′b = (wp
b,1, . . . , w

p
b,n). The lemma follows by observing the following:

Dignore(w1,w2) = DL1
(w′1,w

′
2).

Definition 4.13. For i ∈ [n], let the corrective parameter function be defined as

fc(w1,w2, i) :=
(w1,i + w2,i)

p

||w1||pp + ||w2||pp
.

Definition 4.14. The constant c := c(w1,w2) is defined as

c(w1,w2) :=
||w1 +w2||pp
||w1||pp + ||w2||pp
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This ensures that for every i, fc(w1,w2, i) = c · PrDLp (w1,w2)[i].

The following lemma will be useful for arguing the validity of the final
protocol.

Lemma 4.15. For all i ∈ supp(DLp
(w1,w2)),

Pr
DLp (w1,w2)

[i] ≤ 2p−1/c · Pr
Dignore,p(w1,w2)

[i].

The proof is found in Section 7.2.2.
We now present the Lp sampling protocol ΠLp

in Protocol 13. We show the
correctness and efficiency of the protocol below.

Lemma 4.16. With all but negligible probability, on inputs w1 and w2, protocol
ΠLp samples exactly correctly from DLp(w1,w2). Further, for any constant p,
the protocol has communication Õ(1).

The proof is found in Section 7.2.2. We note that this result strictly generalizes
Lemma 4.8. In particular, setting p = 2 in the above protocol yields a protocol
with exactly the same parameters as the L2 sampling protocol.

4.4 Two-party Product Sampling
We next consider the problem of two-party sampling from a product distri-
bution. Specifically, given n-dimensional vectors w1 = (w1,1, . . . , w1,n) and
w2 = (w2,1, . . . , w2,n) as the private inputs from P1 and P2 respectively, we wish
to sample from the distribution Dprod defined by

Pr[Dprod(w1,w2) = i] =
w1,i · w2,i∑n

j=1 w1,j · w2,j
=

w1,i · w2,i

⟨w1,w2⟩
Of course, if ⟨w1,w2⟩ = 0, the probability space is not well-defined, and in

this case, we require the protocol to simply output ⊥.
As before, we assume that all weights in w1 and w2 are non-negative.

Ideal functionality. We now define an ideal functionality Fprod for two-
party product sampling. This functionality is parametrized by a function fLeak
capturing the leakage that the functionality gives to the adversary.

Fprod: Ideal functionality for two-party product sampling

The functionality has the following parameters:

• n ∈ N. The dimension of the input weight vectors w1 and w2.

• A function fLeak describing the leakage.

The functionality proceeds as follows:

1. Receive inputs w1 and w2 from P1 and P2 respectively.

2. Compute leak = fLeak(w1,w2)

3. If ⟨w1,w2⟩ = 0, send leak to the adversary and ⊥ to P1 and P2.

4. Otherwise, sample i with probability w1,i·w2,i

⟨w1,w2⟩ , send leak to the adversary,
and send i to P1 and P2.
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4.4.1 Impossibility of sublinear product sampling

Our goal is to find a protocol for two-party sampling with sublinear (in n)
communication. However, unlike the case for L1 sampling, we show that this
goal is actually impossible. Roughly speaking, if parties are allowed to have
arbitrary input vectors, then a sublinear communication solution to product
sampling implies a sublinear communication solution to the disjointness problem,
which is known to be impossible.

For our impossibility result, we first define the two-party disjointness problem.
Disjointness problem. The disjointness problem checks if two input sets
S and T are disjoint (i.e., S ∩ T = ∅). Specifically, we consider a function
DISJn : {0, 1}n × {0, 1}n → {0, 1} defined as:

DISJn(vS , vT ) =

{
1 if ⟨vS , vT ⟩ = 0
0 otherwise

In the above, vS and vT are the characteristic vectors of S and T respectively.
The communication complexity of the solution to the disjointness problem is
known to have a linear lowerbound, as shown in the following Theorem:

Theorem 4.17 ( [12, 118,155]). For any (even non-private) two-party protocol
Π where each party holds vS and vT respectively, if Π computes DISJn(vS , vT )
correctly with probability at least 2/3, the communication complexity of Π is
Θ(n).

Our impossibility result. We first observe that a simple reduction from
Disjointness gives us that is impossible to achieve sublinear product sampling.
Specifically, disjointness can be directly learned from whether the product
sampling protocol outputs ⊥ or not.

Our impossibility result is stronger. We show that it is impossible to achieve
sublinear product sampling even when the product sampling protocol is executed
with input vectors w1 and w2 in which all coordinates are bounded away from 0,
which in particular guarantees that ⟨w1,w2⟩ is bounded away from 0.

Before stating a formal theorem below, for 0 < γ < 1, we first define γ-
heaviness; we say that a vector w is γ-heavy when each coordinate of w is a
number contained in [γ, 1].

Theorem 4.18. Let w1 and w2 be γ-heavy vectors of length n, each respectively
held by P1 and P2. Assume there exists a two-party protocol Πprod for the product
sampling from w1 and w2, with communication at most C := C(n, γ).

Then, for any γ ≤ 1/2n, there exists a constant ρ and a probabilistic protocol
computing DISJn correctly with probability at least 2/3 that has communication
at most log(n) + 1 + ρ · (C + 1).

Proof of Theorem 4.18
We construct a protocol computing DISJn by taking advantage of Πprod as follows:
The protocol for DISJn

Parties A and B each get as input a vector ã, b̃ ∈ {0, 1}n. The goal is to output
1 if the vectors are “disjoint” and 0 otherwise.
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Edge Case: If one of the parties’ inputs has Hamming weight 0, then they
output 1 and send 1 to the other party. From now on, we assume that the
Hamming weight of each party’s input is at least 1.

Preamble: We call the party with the lower Hamming weight input the desig-
nated party. To determine this, A sends to B the Hamming weight of its
input vector ã. If B’s input has higher Hamming weight, it sends back the
bit 1 to A; otherwise it sends 0.

Input Transformation: Let gγ : {0, 1} → R be a boosting function defined as
gγ(0) = γ and gγ(1) = 1. Each party A, B locally transforms their input
vector ã, b̃ to a, b by applying the boosting function in order to ensure
γ-heaviness. That is, for i ∈ [n], set ai = gγ(ãi) and bi = gγ(b̃i).

Sampling Protocol: The parties run the sampling protocol Πprod(a,b) and both
receive some output i∗.

Output Computation: The designated party checks the i∗th bit of its input
by which we denote x (i.e., x = ãi∗ or x = b̃i∗ depending on which party
is the designated party). It sends 1− x to the other party. Both parties
output 1− x.

The following lemmas give the completeness and soundness of the protocol.

Lemma 4.19. If ã, b̃ are disjoint, then the parties both output 1 with probability
at least 1

2+n·γ .

Lemma 4.20. If ã, b̃ are not disjoint, then the parties both output 1 with
probability at most 1− 1

1+n·γ .

Before we prove the lemmas, we briefly describe how we can use these lemmas
to achieve a protocol that correctly computes DISJ with probability at least 2/3.
Note that we can get a gap by setting γ = 1

2n . In other words, parties output 1
when disjoint with probability at least 2

5 . Parties output 1 when not disjoint
with probability at most 1

3 . Since we have a constant gap between completeness
and soundness, this can be amplified to 2/3 and 1/3 by running the protocol a
constant number of times.
Remarks. We would like to characterize the sublinearity condition for product
sampling protocols using the normalized input vectors. We can do this since
without loss of generality we can assume that input vectors to the product
sampling protocols are normalized; in particular, for any (non-normalized)
vectors w1 and w2, we have

Pr

[
Dprod

(
w1

∥w1∥1
,

w2

∥w2∥1

)
= i

]
=

w1,i

∥w1∥1 ·
w2,i

∥w2∥1
⟨ w1

∥w1∥1 ,
w2

∥w2∥1 ⟩
= Pr[Dprod(w1,w2) = i].
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Specifically, we show below that the impossibility theorem implies that in
order to achieve sublinear communication complexity for product sampling, we
would need, at the minimum, a promise on the inputs that guarantees that

⟨w1,w2⟩ ∈ Ω(1/n2),

when w1,w2 are normalized vectors.
To do this, first note that the theorem implies that sublinear communication

product sampling needs to have γ ∈ Ω(1/n). Now, in the proof, any non-disjoint
binary vectors ã, b̃ to the DISJ problem has ⟨ã, b̃⟩ ≥ 1, and these vectors are
transformed to gγ(ã) and gγ(b̃). Let w1 and w2 be the normalized vectors gγ(ã)
and gγ(b̃); that is, w1 := gγ(ã)/∥gγ(ã)∥1 and w2 = gγ(b̃)/∥gγ(b̃)∥1. Since each
entry of gγ(ã) and gγ(ã) is at most 1, we have ∥gγ(ã)∥1 ≤ n and ∥gγ(b̃)∥1 ≤ n.
Therefore, we have

⟨w1,w2⟩ ≥
⟨gγ(a), gγ(b)⟩

n · n
≥ 1

n2
.

Proof of Lemma 4.19. Assume that ã, b̃ are disjoint, and moreover, assume
WLOG that A is the designated party, and its input vector has Hamming weight
w. Recall that ai = gγ(ãi) and bi = gγ(b̃i). Let

W0,0 :=
∑

i:ãi=0,b̃i=0

ai · bi, W1,0 :=
∑

i:ãi=1,b̃i=0

ai · bi

W0,1 :=
∑

i:ãi=0,b̃i=1

ai · bi, W1,1 :=
∑

i:ãi=1,b̃i=1

ai · bi

Note that W0,0 ≤ n · γ2. Further, W1,1 = 0, since the vectors are disjoint,
and W1,0 = w · γ since the Hamming weight of ã is exactly w. Additionally, note
that W0,1 ≥W1,0, since A is the designated party, so the Hamming weight of ã
is less than or equal to the Hamming weight of b̃.

Note that when the designated party is A, then the output of the protocol is
1− ai∗ . Using the above facts, the probability of outputting 1 is

W0,0 +W0,1

W1,1 +W0,0 +W0,1 +W1,0
≥ W0,1

W0,0 +W0,1 +W1,0

≥ W0,1

nγ2 + 2W0,1

=
w · γ

nγ2 + 2w · γ
=

w

nγ + 2w

≥ 1

nγ + 2
,

where the last inequality follows since w ≥ 1, due to the Edge Case step of the
protocol.
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Proof of Lemma 4.20. Assume that ã, b̃ are not disjoint. As before, consider
W0,0, W1,0, W0,1, and W1,1. Note that W1,1 ≥ 1 since the inputs are not disjoint.
We also have W0,0 +W0,1 +W1,0 ≤ n · γ, since ai or bi is γ in these cases.

Using the above facts, the probability of outputting 0 is

W1,0 +W1,1

W1,1 +W0,0 +W0,1 +W1,0
≥ W1,1

W1,1 + n · γ

≥ 1

1 + n · γ
.

4.4.2 Product sampling while leaking at most the inner product

Assumptions. As before, we assume that all weights in w1 and w2 are non-
negative. As discussed in the previous subsection, we also assume, without loss
of generality, that

∥w1∥1 = ∥w2∥1 = 1.

Overview. We now show that the impossibility result of Section 4.4.1 can
be bypassed if we make some assumptions on the inputs. Specifically, if we
restrict ourselves to the case when ⟨w1,w2⟩ = ω

(
logn
n

)
, then we can achieve a

sublinear communication protocol for product sampling on inputs w1,w2
7. Of

course, by observing that the protocol uses sub-linear communication, due to
our lower-bound, both parties will learn that such a promise on the inputs is
satisfied; the lower bound implies that some leakage about the inputs is necessary.
In our protocol, we show that the information leaked is at most the inner product
⟨w1,w2⟩. (Formally, we set fLeak(w1,w2) = ⟨w1,w2⟩.) Interestingly, we show
that this is the case even though our protocol does not, and cannot,8 actually
compute ⟨w1,w2⟩.
Product sampling protocol. Roughly, the protocol works as follows. The
protocol proceeds in rounds where in each round P1 and P2 use the oblivious L1

sampling with a single input vector (Fosample(L1)) to produce two secret-shared
sampled indices, one from P1’s input vector, and one from P2’s input vector.
The parties then run a secure 2-PC protocol to securely compare these values,
and if they are equal, output the sampled index. If the two sampled indices are
not equal, the parties move to the next round.

We describe a private two-party protocol for product sampling leaking at most
the inner product (see Protocol 14). This protocol is in the {Fosample(L1),F2PC}-
hybrid model.
Security. We will prove the following theorem.

7Regarding ⟨w1,w2⟩, there is a gap between the lowerbound result (i.e., Ω( 1
n2 )) and our

construction (i.e., ω( logn
n

)). Resolving the gap is left as an interesting open problem.
8This can be shown by a simple modification of the lower bound proof from Section 4.4.1.

63



Protocol 14 Product sampling (ΠIP
prod) in the {Fosample(L1),F2PC}-hybrid.

Inputs: Party Pb has input wb of length n.

1. Invoke the Fosample(L1) ideal functionality with P1 as the sender with input
w1 and P2 as the receiver. Let i1,1 and i1,2 be the output from the ideal
functionality to P1 and P2 respectively.

2. Invoke the Fosample(L1) ideal functionality with P2 as the sender with input
w2 and P1 as the receiver. Let i2,1 and i2,2 be the output from the ideal
functionality to P1 and P2 respectively.

3. Invoke the F2PC ideal functionality with the following circuit:

Input: (i1,j , i2,j) for j = 1, 2.

(a) Let i1 = i1,1 ⊕ i1,2, i2 = i2,1 ⊕ i2,2.

(b) If i1 is equal to i2, output i1 to both P1 and P2. Otherwise, output
⊥.

4. If the output from the ideal functionality is ⊥, go back to Step 1. Otherwise,
output whatever F2PC outputs.

Output: Both parties output the sampled value i.

Theorem 4.21. Protocol ΠIP
prod securely realizes Fprod with leakage fLeak(w1,w2) =

⟨w1,w2⟩ in the {Fosample(L1),F2PC}-hybrid model with semi-honest security.

Proof. We describe the simulator Sim in the {Fosample(L1),F2PC}-hybrid model
for the case that Party 1 is corrupted. The simulator and proof of security are
analogous in the case that Party 2 is corrupted.

Sim receives as input w1, the output i∗, and ⟨w1,w2⟩. Sim samples r∗ from
a geometric distribution with success probability p = ⟨w1,w2⟩.

Sim invokes Party 1 on input w1. For i ∈ [r∗ − 1], Party 1 sends its input to
the first invocation of Fosample(L1) and Sim returns to it a random value in Zn.
Party 1 sends its input to the second invocation of Fosample(L1) and Sim returns to
it a random value in Zn. Party 1 sends its input to the F2PC functionality and
Sim returns to it ⊥. For i = r∗, Party 1 sends its input to the first invocation of
Fosample(L1) and Sim returns to it a random value in Zn. Party 1 sends its input
to the second invocation of Fosample(L1) and Sim returns to it a random value in
Zn. Party 1 sends its input to the F2PC functionality and Sim returns to it i∗.

It is clear that the view of Party 1 is identical in the ideal and real world,
assuming that Sim samples the first succeeding round, r∗, from the correct
distribution. In the following, we argue that this is indeed the case.

First, note that on any given round, we have

pc := Pr[collision] =
∑
i

Pr[ii = i ∧ i2 = i] =
∑
i

w1,i · w2,i = ⟨w1,w2⟩.
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Let FirstSuccess(r) denote an event in which the protocol succeeds for the
first time on the r-th round. Now, for r ∈ N, we have

Pr[FirstSuccess(r) AND the output is i∗]

= Pr[no collision in first r − 1 rounds] · Pr[i1 = i∗ ∧ i2 = i∗ on the rth round]

= (1− pc)
r−1 · Pr[i1 = i∗ ∧ i2 = i∗]

Now, the probability that the protocol eventually outputs i∗ is:

Pr[protocol eventually outputs i∗ after some number of rounds]

=

∞∑
j=1

Pr[FirstSuccess(j) AND the output is i∗]

= Pr[i1 = i∗ ∧ i2 = i∗]

∞∑
j=1

(1− pc)
j−1 = Pr[i1 = i∗ ∧ i2 = i∗] · 1

pc
.

Thus, the probability of FirstSuccess(r) conditioned on the output being i∗ is:

Pr[FirstSuccess(r)| the output is i∗]

=
Pr[FirstSuccess(r) AND the output is i∗]

Pr[protocol eventually outputs i∗ after some number of rounds]

=
(Pr[i1 = i∗ ∧ i2 = i∗]) · (1− pc)

r−1

Pr[i1 = i∗ ∧ i2 = i∗] · 1
pc

= pc · (1− pc)
r−1.

The above is exactly the probability of the number of Bernoulli trials (with
probability pc = ⟨w1,w2⟩) needed to get one success. Sampling the number of
rounds is therefore equivalent to sampling the random variable corresponding
to the number of rounds from a geometric distribution with success probability
pc = ⟨w1,w2⟩, which is exactly what Sim does.

Performance. As shown above, the number of rounds r needed by this protocol
is distributed as the number of Bernoulli trials (with probability p = ⟨w1,w2⟩)
needed to get one success. Thus, the expected number of rounds is r = 1

⟨w1,w2⟩ . In
each round, the communication consists of a secure 2-PC of equality on O(log n)-
bit inputs, which can be done in O(log n) communication and O(1) rounds. Thus,
in total, this protocol has expected communication O( logn

⟨w1,w2⟩ ) and O( 1
⟨w1,w2⟩ )

rounds. This communication is sublinear in n when ⟨w1,w2⟩ = ω
(

logn
n

)
.

Trading efficiency for privacy. In the proof above, the simulator requires
the value of ⟨w1,w2⟩, which is not revealed by the output. However, a slight
modification to the protocol allows us to remove this leakage at the cost of
additional, though still sub-linear, communication. Instead of terminating the
protocol the first time there is a collision in the L1 samples, we can pad the
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communication cost by making O( n
logn ) calls to Fosample(L1). Under the promise of

⟨w1,w2⟩ = ω( logn
n ), this ensures a collision in the outputs (with all but negligible

probability). The parties can then use O( n
logn ) communication to obliviously

find and output the collision, without revealing the index, and avoiding the
leakage of ⟨w1,w2⟩.

Generalizing this idea, we arrive at a set of similar protocol modifications
that support a continuous set of tradeoffs: instead of choosing between leaking
⟨w1,w2⟩ to the simulator, or padding to the maximum communication, we can
choose to leak some lower bound on ⟨w1,w2⟩, and modify the protocol to make
a proportionate number of calls to Fosample(L1), search (obliviously) for a collision,
and repeat if necessary.

Without a full proof, we provide some intuition for the fact that this tradeoff
between leakage and communication is inherent. We can do that by generalizing
the statement of Theorem 4.18. We first modify the definition of γ-heavy defined
previously: for any t(n) = O(n), we say that a vector w of length n is γt,n-heavy if
each of the t := t(n) coordinates of w is a number contained in [γ, 1]. In particular,
we now allow t(n) = o(n). Then, with a small modification to the reduction, we
can prove that if w1 and w2 are γt,n-heavy, and if there exists a protocol Πprod

for product sampling with communication at most C := C(n, γ), then there
exists a protocol for computing DISJt with communication log(n)+O(C). In the
modified reduction, the parties simply increase the weights of the t input slots
(as before), and append n− t entries containing 0 at the end. Since we know that
DISJt requires O(t) communication, the implication is that we have increasingly
weaker communication bounds as we are provided increasingly strong promises
on the inner product. Conversely, for a certain set of input vectors, observing
the communication of the sampling protocol gives you a bound on the inner
product of the inputs. The less communication observed, the tighter that bound,
and the greater the leakage.

4.5 Product Sampling in Constant Rounds

Achieving constant rounds through parallel repetition. In Sections 4.4,
we showed a sublinear communication protocol for product sampling when
⟨w1,w2⟩ is sufficiently large. Moreover, this protocol provably leaked no more in-
formation than the inner product. However, this protocol required O(1/⟨w1,w2⟩)
rounds of communication. This raises the question of whether constant-round
sublinear product sampling is possible under the same restrictions on the inputs.

Our protocol to achieve this takes a relatively standard approach. Suppose
that we are given the value of ⟨w1,w2⟩. Then, since the expected number of
samples until a collision is a function of ⟨w1,w2⟩, we can just run the inner
loop of protocol Πprod in parallel sufficiently many times to guarantee that the
protocol would terminate with all but negligible probability.
How many times to repeat? However, there is one catch. It is not actually
possible to compute ⟨w1,w2⟩ in sublinear communication! One simple solution
is to use our promise on the input: we could run the inner loop enough times to
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guarantee termination for any inputs satisfying the promise (e.g. ω( n
logn ) times).

However, this forces us to adopt the worst-case communication cost, which
might be undesirable. (Recall, it also offers the least leakage, which might be
desirable.) Instead, we re-establish the trade-off between leakage and efficiency
as follows. We begin by computing an approximation of the inner product in
sublinear communication (see Section 4.5.1). Using this approximation, we can
then realize our sublinear communication, constant round protocol for product
sampling as follows in the next subsection.

4.5.1 Secure approximation of the inner product

We achieve a protocol that securely approximates the inner product with sub-
linear communication. In particular, we take advantage of the well known
Johnson–Lindenstrauss Transform (JLT) [105,114] sketch.
Additional assumptions about w1 and w2 . We assumed that w1 and w2

are normalized and correlated such that ⟨w1,w2⟩ = ω(log n/n). In a similar
vein, we assume that the cosine similarity of the two vectors w1 and w2 is not
small, e.g., ω(1/ log n).

Recall the cosine similarity between the two vectors w1 and w2 is defined
as cos(w1,w2) =

⟨w1,w2⟩
∥w1∥2·∥w2∥2 . Since the L1 norm of each vector is equal to 1,

their L2 norms will typically much smaller than 1, which implies that the cosine
similarity is usually much larger than ⟨w1,w2⟩.
Approximating the inner product using JLT sketches. The JLT sketch
of x is equal to Mx, where M is a random k × n matrix with k ≪ n. More
specifically, the inner product of the two vectors is approximated as follows:

approxIP(w1,w2): ▷ w1 and w1 are n dimensional vectors.

1. Choose k × n matrix M such that each entry Mi,j is chosen from an
independent Gaussian distribution of mean 0 and variance 1.

2. Output 1
k · ⟨Mw1,Mw2⟩. (Here, we slightly abuse the notation and treat

the vectors w1 and w2 as column vectors.)

Lemma 4.22. (cf. [117, Corollary 3.1]) For all w1,w2 such that cos(w1,w2) ≥ t,
the procedure approxIP(w1,w2) approximates ⟨w1,w2⟩ up to a 1 ± ϵ approx-
imation factor with all but negligible probability (over the choice of the JLT
matrix), using JLT dimension k = ω

(
log(n)
t2·ϵ2

)
.

Privacy of the approximate output. What is interesting is that the
approximate inner product doesn’t reveal anything more than the inner product
itself. In this sense, it satisfies the notion of private approximation introduced
in [78]. In particular, we prove the following:

Lemma 4.23. The output of approxIP(w1,w2) can be simulated perfectly given
only ⟨w1,w1⟩, ⟨w2,w2⟩, and ⟨w1,w2⟩.
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The proof is found in Section 7.2.2.
Private protocol via JLT. Using the JLT sketch, we can design a private
protocol approximating the inner product. See Protocol 15. The protocol uses
threshold FHE (e.g., [141]).

Protocol 15 Private protocol for computing approximate inner product

Inputs: Parties P1 and P2 has inputs w1 and w2 respectively.

The protocol proceeds as follows:

1. Parties set up a threshold FHE scheme.

2. They securely sample k × n matrix M described in the above with in
the threshold FHE. In particular, they jointly generate an encrypted ran-
dom seed JsK. Using this randomness, parties homomorphically evaluates
JPRG(s)K, where PRG is a pseudorandom generator, to obtain the JLT
matrix JMK.

3. Each party Pb homomorphically evaluates Jw̃bK = JMwbK.

4. Party P1 sends Jw̃1K to P2.

5. Party P2 homomorphically evaluates J⟨w̃1, w̃2⟩K and sends it to P1.

6. Parties execute threshold decryption to obtain and output 1
k · ⟨w̃1, w̃2⟩.

Security. Since every protocol message is a ciphertext, based on semantic
security of the threshold FHE, it is easy to see that the protocol securely realizes
a functionality for computing approxIP. Based on Lemma 4.23, the leakage profile
of the functionality is ⟨w1,w1⟩, ⟨w2,w2⟩, and ⟨w1,w2⟩.

4.5.2 Constant-round protocol for product sampling

Note that the Protocol 14 has the following structure. In particular:

• The probability that Protocol 14 samples a good index and halts in a given
trial is p = ⟨w1,w2⟩.

We need to repeat r trials in parallel so that the probability that all r trials
fail is negligible. In other words, we should have

(1− p)r ≤ e−p·r ≤ e−ω(log κ).

This means that we should have r > ω(log κ)
p .

Moreover, in the previous subsection, we discussed how to obtain a good
estimate p̃ = (1± ϵ)p. Therefore, we should have

r >
(1 + ϵ) · ω(log κ)

p̃
>

ω(log κ)

p
.

68



In summary, by running (1+ϵ)·ω(log κ)
p̃ instances in parallel, we achieve constant

round protocols for product sampling with negligible failure probability. The
final protocol should perform extra steps to hide from which trial the output
comes from, and these changes can made in a straightforward way.

4.6 Two-party Exponential Mechanism
Recall that one of our main motivations for this work is to instantiate a two-party
version of the exponential mechanism to achieve differential privacy. We observe
that for many natural loss functions (i.e., when the loss function is additive
across the two parties), the exponential mechanism on two parties is essentially
equivalent to product sampling. We explain this further with a concrete example
in Section 4.6.1.

4.6.1 A concrete example

Suppose we want to choose a classifier minimizing the L2 error over a test dataset
while preserving differential privacy of the labeled examples. Suppose there are
n machine learning classifiers (c1, . . . , cn), and a test dataset D = (d1, . . . , d|D|)
consists of |D| rows. Let ℓj ∈ {0, 1} be the label of the j-th row dj of the dataset.
For a machine learning classifier ci, we define its L2 loss function as follows:

f ci
loss(D) :=

∑
j∈|D|

(ci(dj)− ℓj)
2/|D|.

Now, consider a two-party federated setting in which the parties would like to
perform computation on the aggregation of their local datasets. In particular, we
assume party P1 (resp., party P2) holds dataset D1 (resp., D2) with |D1| = |D2|.
Let D = D1||D2.
DP mechanism in the central curator model. In our mechanism, the
central curator would receive input from parties P1 and P2 and choose classifier
ci with a (ϵ, 0)-DP guarantee using the exponential mechanism.

We observe that the L2 loss function f ci
loss(D) over the entire dataset D can

be computed by each party Pb first locally computing

f ci
loss(Db) :=

∑
j∈|Db|

(ci(db,j)− ℓb,j)
2/|D|,

and then computing f ci
loss(D) = f ci

loss(D1) + f ci
loss(D2).

Based on the above observation, in our mechanism, each party Pb computes
a vector vb as follows:

For b ∈ {1, 2}, let vb = (vb,1, . . . , vb,n), where vb,i = e−ϵ·
f
ci
loss

(Db)

2∆u and
∆u = ϵ

40(logn+t) , and κ is the security parameter.

Then, each party Pb computes wb :=
vb

||vb||1 (i.e., the normalization of vb), and
sends wb to the central curator. Finally, the curator will choose classifier ci with
the probability wi,i·wi,2

⟨w1,w2⟩ .
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Lemma 4.24. If |D| ≥ 40(logn+ κ)/ϵ, our mechanism provides (ϵ, 0)-DP.

Proof. Let qi(D) =
−fci

loss(D)

2∆u . We first show that drawing a sample from the
product distribution of w1,w2 is identical to running the exponential mechanism
to select classifier ci with probability

eϵqi(D)∑
j∈[n] e

ϵqj(D)
.

Recall that product sampling on inputs w1,w2 returns index i with probability
w1,i·w2,i

⟨w1,w2⟩ . Since wb,i =
vb,i
||vb||1 , we can rewrite the previous equation as

w1,i · w2,i

⟨w1,w2⟩
=

v1,i · v2,i
⟨v1,v2⟩

=
eϵ·qi(D1) · eϵ·qi(D2)∑

j∈[n] e
ϵ·qj(D1) · eϵ·qj(D2)

=
eϵ·qi(D)∑

j∈[n] e
ϵ·qj(D)

Note that the loss functions have global sensitivity of 1/|D| since a change
to the j-th row of Db can cause f ci

loss(Db) to change by ±1/|D|. Instead of using
1/|D|, our mechanism uses a larger value ∆u. Since the ∆u is larger than
the sensitivity whenever |D| ≥ 40(log n+ κ)/ϵ, and our mechanism is a simple
exponential mechanism, (ϵ, 0)-DP holds.

Utility. Although using a larger value ∆u deteriorates the utility of the
mechanism, we show that the utility is still acceptable. Applying Theorem 3.11
in [65] to our setting, we have

Pr

[
f ci
loss(D) ≤ f

copt
loss (D)− 2∆u

ϵ
· (log n+ κ)

]
≤ e−κ.

Noting that ∆u = ϵ
40(logn+κ) , we have

Pr
[
f ci
loss(D) ≤ f

copt
loss (D)− 1/20

]
≤ e−κ.

Viewing f
copt
loss (D) as the optimal accuracy for the chosen classifier. This implies

that our mechanism returns a classifier that is at most 5% less accurate than the
optimal classifier. We note that an even smaller loss in accuracy can be achieved
by increasing ∆u and the minimum size of D accordingly.

Jumping ahead, we use this larger ∆u in order to achieve differential privacy
of the approximate inner product evaluation to be described in the next section.

4.6.2 Differentially-Private Inner Product for the Exponential Mech-
anism

Issue: DP is broken due to leakage ⟨w1,w2⟩. Based on the result of the
previous subsection, we can simply run the product sampling protocol to achieve
a two-party exponential mechanism without the central curator. However, there
is one issue we need to address. In particular, the leakage from the previously
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described protocols for product sampling violates the DP guarantee of the
exponential mechanism; the leakage ⟨w1,w2⟩ is clearly not differentially private
with respect to P2’s input.

Thus, to instantiate the exponential mechanism, we give an alternative inner
product approximation protocol that achieves differential privacy. Using this
approximation, we can build a protocol that is able to sample from exactly the
product distribution while additionally leaking a value leak that is differentially-
private and thus does not violate the DP guarantee of the exponential mechanism.
We build such a protocol based on the approximate inner product using the JLT
given in Section 4.5.1.
Approximating the inner product differentially privately. We now
describe a mechanism, executed by a trusted curator, to approximate the inner
product on inputs w1 and w2 with wb,i =

vb,i
||vb||1 for b ∈ {1, 2} and i ∈ [n] as

described above. This mechanism is essentially the approxIP algorithm described
in Section 4.5.1 with noise added in the exponent to guarantee differential privacy.

DP-approxIP(w1,w2):

1. Choose k × n matrix M such that each entry Mi,j chosen from an inde-
pendent Gaussian distribution of mean 0 and variance 1. The dimension k
(with k ≪ n) is determined appropriately according to Lemma 4.22.

2. Choose a value x from the Laplace distribution Lap(1/(∆u · |D|)).

3. Output ex · ⟨Mw1,Mw2⟩.

Public sampling of M. Contrary to Section 4.5 where M was sampled inside
the FHE, here, the matrix M can be publicly sampled (e.g., through a commonly
chosen random PRG seed), since DP is achieved through adding a Laplace noise.
Differential privacy. We say that two datasets D and D′ are neighboring if
they differ in exactly one row.

Recall that, as in the application described in Section 4.6.1, the parties’

inputs to the product sampling are of the form wb where wb,i ∝ e−ϵ·
f
ci
loss

(Db)

2∆u for
some additive loss functions f ci

loss.

Theorem 4.25. If |D| ≥ 40 · (log n + κ)/ϵ, the mechanism DP-approxIP is
ϵ-differentially private w.r.t a database D1 (resp., D2) when the loss functions
f ci
loss(D) have low sensitivity 1/|D|.

Proof. We prove differential privacy with respect to D1 (i.e., the adversary knows
D2 and the differential privacy guarantee holds relative to rows of D1). The
reverse case is analogous.

Note that the change of a single row in D1 causes the values v1,i (for i ∈ [n])
and the value ∥v1∥1 to change by at most a multiplicative factor of α :=
e±ϵ/(2∆u·|D|). Thus, letting Mℓ be the ℓ-th row of the JLT matrix (which is
fixed and public), for each ℓ ∈ [k], the value ⟨Mℓ,wb⟩ can change by at most a
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multiplicative factor of α2. Therefore, the dot product ⟨Mw1,Mw2⟩ can change
by at most a multiplicative factor of α2.

Ultimately, this means that we have additive sensitivity of ϵ/(∆u · |D|) in
the exponent. To achieve differential privacy, we thus need to multiply the dot
product estimate by ex, where x is drawn from Lap(1/(∆u · |D|)).

Correctness. We briefly analyze the estimation error due to the added noise.
Since x is drawn from Lap(1/(∆u · |D|)), the probability that |x| ≥ ϵ is at
most e−∆u·|D|. When |D| > ∆u · κ/ϵ, this probability is at most e−κ, which is
negligible.

In other words, when D is a sufficiently large dataset, with overwhelming
probability, the incurred multiplicative error is e|x| ≤ eϵ < 1 + 2ϵ. Thus,
differential privacy adds at most a 1± 2ϵ multiplicative error on top of the error
of the approximation algorithm.
Removing the curator. We described the inner product approximation
protocol as being run by a trusted curator. As is standard, we can replace this
curator with a secure 2-PC evaluating the mechanism to achieve computational
DP.

4.6.3 Instantiating the Exponential Mechanism

We now have all the necessary pieces to instantiate a sublinear communication
protocol to evaluate the exponential mechanism for a database D held jointly by
two parties.
The two-party exponential mechanism protocol. We now describe the
distributed exponential mechanism where Pb has input Db and the loss functions
have low sensitivity. This protocol is in the Fosample(L1)-hybrid model.
Security. We will prove the following theorem.

Theorem 4.26. If |D| ≥ 40 · κ(logn+ κ)/ϵ2, protocol ΠEM is (2ϵ, negl(κ))-DP.

It is easy to see that this protocol runs an enough number of product samplings
in parallel so that it does not output abort, except with negligible probability
(see Section 4.5.2). Therefore, for the proof, we assume that the protocol does
not output abort.

Proof. We first consider where P1 is corrupted by the adversary A. Let viewA(D)
be the view of the protocol to A (consisting of input, output and transcript)
in the {F2PC ,Fosample(L1)}-hybrid model. In the j-th invocation of Fosample(L1),
the outputs {ij1,1, i

j
2,1}j , i) sent to A by the ideal functionality are uniformly dis-

tributed and independent of D. Thus, WLOG, we assume that A’s view consists
of its input, transcript η, and output i. Let viewtrans

A (D) (resp., viewout
A (D)) be

the transcript (resp., output) contained in A’s view during a random execution
of the protocol with input D.
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Protocol 16 Exponential Mechanism Protocol (ΠEM) in the {F2PC ,Fosample(L1)}-
hybrid model
Inputs: Party Pb has input Db

1. Pb computes vb = (vb,1, . . . , vb,n) such that vb,i = e−ϵ·
f
ci
loss

(Db)

2∆u , where
∆u = ϵ

40(logn+κ) . Let wb =
vb

||vb||1 .

2. Invoke the F2PC ideal functionality to evaluate η = DP-approxIP(w1,w2).
Note that η is an (1 + 2ϵ)-approximation of the inner product.

3. The parties execute the following steps m = (1+2ϵ)·ω(log κ)
η times in parallel.

(a) Invoke the Fosample(L1) ideal functionality with P1 as the sender with
input w1 and P2 as the receiver. Let ij1,1 and ij1,2 be the output of
the jth execution to P1 and P2 respectively.

(b) Invoke the Fosample(L1) ideal functionality with P2 as the sender with
input w2 and P1 as the receiver. Let ij2,1 and ij2,2 be the output of
the jth execution to P1 and P2 respectively.

4. Invoke the F2PC ideal functionality for the following circuit:

Input: (ij1,1, i
j
2,1, i

j
1,2, i

j
2,2) for j = 1, . . . ,m.

(a) Let ij1 = ij1,1 ⊕ ij1,2, i
j
2 = ij2,1 ⊕ ij2,2.

(b) Find the smallest j such that ij1 equals ij2, and output ij1 to both P1

and P2. If no such j exists, output abort.

Output: Both parties output the sampled index i or abort.
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For all neighboring database D and D′, and for all η and i, we have:

Pr[viewtrans
A (D) = η, viewout

A (D) = i]

= Pr[viewtrans
A (D) = η] · Pr[viewout

A (D) = i|η]
≤ eϵ Pr[viewtrans

A (D′) = η] · Pr[viewout
A (D) = i|η]

≤ eϵ Pr[viewtrans
A (D′) = η] · eϵ Pr[viewout

A (D′) = i|η]
= e2ϵ Pr[viewtrans

A (D′) = η, viewout
A (D′) = i],

The first inequality holds form the DP of protocol DP-approxIP, and the
second inequality holds from the DP of the exponential mechanism.

The case when P2 is corrupted can be proved similarly.

5 MinHash

5.1 Introduction

Min-hash sketch. The min-hash sketch is a simple and well-known technique
to produce an unbiased estimate of the Jaccard index [33, 126]. The Jaccard
index [111] is a similarity measure between two sets A and B, denoted J(A,B),
defined as the fraction of the elements in the intersection of A and B divided by
the number of elements in their union. That is, J(A,B) = |A∩B|

|A∪B| . The Jaccard
index has seen wide application for clustering of websites and documents [33,34],
community identification [173], DNA matching [52], and machine learning [113,
183].

Computing the Jaccard index exactly, especially when the input sets are
large, can be costly. The min-hash sketch allows communication-efficient approx-
imation [33]. The basic idea behind the min-hash sketch is to apply a random
hash function h to both sets A and B and then compare the minimum hashes
(denoted minh(A), minh(B)) in both sets. If minh(A) = minh(B), it means
that an element in A∩B has been hashed to the minimum value among elements
in A ∪ B. This occurs with probability J(A,B). Thus, to get an unbiased
approximation of the Jaccard index, it suffices to repeat this procedure with
sufficiently many random hashes.
Private Jaccard index via min-hash. Due to its simplicity and efficiency,
the min-hash sketch has become a popular tool to approximate the Jaccard
index. Moreover, since the min-hash sketch only needs to compare the minimum
hashes, it has been a key building block when maintaining privacy of the input
sets is important, e.g., if the input sets represent fingerprints, DNA, or medical
records.

There are two classes of solutions for privacy-preserving min-hash. The first
class of solutions (e.g. [26,52,72,156]) considers how to compute the min-hash
and Jaccard index in a two-party setting, where the parties do not trust each
other with their private inputs. The goal of these works is to design secure two-
party computation protocols for computing the min-hash sketch as efficiently as
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possible, but they generally do not consider the privacy implications of revealing
the output. The second line of work (e.g. [10,184,185]) considers how to make
the min-hash approximation privacy-preserving by adding noise to the local
min-hash sketches.
Our work. These works serve as the starting point for our study. In partic-
ular, we first present a protocol that addresses the privacy of min-hash-based
approximations from two perspectives. Similar to the first class of solutions,
our protocol ensures that no private information about the input is revealed
beyond the Jaccard index. Additionally, in line with the second class of solutions,
our protocol guarantees that even the Jaccard index output satisfies differential
privacy, which is achieved through adding a small amount of noise. Next, we
explore whether any variant of differential privacy can be achieved without
adding noise to the protocol, which would improve its accuracy. Interestingly, we
demonstrate that under specific constraints on the inputs, the resulting protocol
still provides a certain level of privacy guarantees.

More formally, we define three ideal functionalities to capture flavors of
min-hash. FminH computes the min-hash and then outputs both the min-hash
count and the random hashes used. On the other hand, FprivH computes the
min-hash functionality and outputs only the min-hash count. This corresponds
to a setting where the min-hash is computed by a trusted curator who does
not disclose the hashes used. Finally, we define Fnoisy-minH which adds noise to
the min-hash count computed by FminH. For our first result we show that for
appropriate noise levels, the Fnoisy-minH functionality achieves both high accuracy
and differential privacy, and design a secure two-party computation of Fnoisy-minH

that is both computation and communication-efficient. For our second result,
we consider a setting in which the outputs of FminH or FprivH have already been
released without added noise and show that, under certain conditions on the
inputs, this setting also provides privacy guarantees for individuals’ inputs.
Differentially-private and secure computation of min-hash. To build a
protocol for differentially-private min-hash we observe that the min-hash count
has low global sensitivity. This allows us to define a functionality Fnoisy-minH,
parameterized by (ϵ, δ) which adds (properly-tuned) Laplace noise to the output
of the min hash (See Figure 18 for details.) We then prove the following theorem
about this functionality.

Theorem 5.1 (Informal). Fnoisy-minH is (ϵ, δ)-DP against an adversary corrupting
either party.

To realize a protocol for DP estimation of the Jaccard index, we now just need
to instantiate this functionality. We show how this can be done efficiently using a
PSI-CA functionality in Section 5.4. In Section 5.9, we evaluate the performance
when instantiating the PSI-CA protocol [53, 172] in the semi-honest setting.
The resulting protocol has better accuracy compared to the prior work [10, 101].
We recommend this protocol to compute differentially-private estimates of the
Jaccard index.
Privacy after leakage of min-hash output. While ideally, parties should
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follow recommendations to add noise to the output of the min-hash count before
releasing it (as in functionality Fnoisy-minH), in practice, this may not happen.
Further, there may be historical counts that have already been released without
added noise. We refer to settings in which such output is released as “output
leakage.”

We ask whether any privacy for an individual can be salvaged in this case.
Somewhat surprisingly, we show that under certain conditions on the inputs
to FminH or FprivH, the error of the min-hash approximation itself is sufficient
to achieve (variants of) differential privacy–meaning that the presence of an
individual element in one of the two input sets cannot be inferred given the
output of FminH or FprivH. Essentially, the error of the sketch acts as noise to
protect the privacy of the inputs. Similar observations that sketching algorithms
inherently preserve privacy under certain input restrictions have previously been
shown for the Johnson-Lindenstrauss sketch [24], the LogLog sketch [46, 165],
and other sketches [179].

We first consider the simpler case of the privacy of an individual once the
output of FprivH has been released. Recall that in this setting a set of private
hashes is chosen by the functionality and these hashes are not returned as output
of the functionality. Standard differential privacy in this setting requires that
conditioned on knowledge of A and all but one element of B (denoted by x∗),
the probability that the functionality outputs any value out when x∗ ∈ B versus
when x∗ /∈ B differs by a factor of at most eϵ with all but negligible probability.

We note that min-hash is not differentially private in this setting if A ∩B is
either too large or too small. For example, if |A∩B| = 0 when x∗ /∈ B and 1 when
x∗ ∈ B, then min-hash always outputs 0 in the first case and outputs a count
≥ 1 with noticeable probability in the second. We prove the following theorem
showing that when this is not the case the min-hash output is differentially
private:

Theorem 5.2 (Informal). If the size of the intersection is a constant fraction of
the size of A and B, then the output of FprivH is (ϵ, δ)-DP for negligible δ.

We stress that this theorem crucially relies on the fact that the parties, and
the adversary, do not have any information about the chosen hashes, and cannot
learn the evaluation of the hashes on their own inputs. Note that for this theorem
to be useful in a two-party protocol, the parties must compute the hashes under
a 2-PC or FHE. This is unlikely to be done in practice. Thus, typically, the
parties will locally store the hashes9 during the computation. To understand the
privacy of this approach, we consider the case of the FminH functionality where
the output leakage includes the hash functions as well as the counts.

Unfortunately, in this case there is a problem when trying to argue privacy.
In the standard DP setting, we assume that the adversary knows all of the inputs
(in this case, all entries in both sets A and B) except for some input x∗ and
wants to determine, from the output of the computation, whether x∗ was in
the other party’s set. If the hashes are known, then the output of min-hash is

9As noted previously, it is sufficient to store a short seed to identify the hash.
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deterministic: The adversary can exactly reconstruct the min-hash execution
for the case when x∗ is in the set and when it is not, and then see which of
these matches the output it received. Since the min-hash protocol provides a
good approximation of the Jaccard index, the adversary will be able to exactly
determine whether or not x∗ ∈ B with noticeable probability.

Note that the above attack works only if the adversary knows the entirety of
both sets A,B and just tries to distinguish whether x∗ ∈ B or not. Realistically,
especially when the inputs are large, the adversary would not know the entire
input of the honest party. More precisely, we assume that given the adversary’s
set (and even the intersection between the two sets), the honest party’s set still
has sufficiently high min-entropy. With this assumption, we turn to the tool
of distributional DP (DDP) [14] which allows us to analyze differential privacy
when the distribution of inputs has sufficient uncertainty.

We begin with a relatively strong assumption on the amount of uncertainty
the adversary has about the honest set. Specifically, we assume that every
element that is not in the intersection is highly unpredictable (i.e., has a high
amount of min-entropy), even conditioned on all the other set elements. Under
this assumption, we prove the following theorem:

Theorem 5.3 (Informal). If each non-intersecting item has sufficiently high
min-entropy, revealing the hash functions10 together with the min-hash counts
(as in the FminH functionality) preserves (ϵ, δ)-DDP for negligible δ, as long as
the size of the intersection is a constant fraction of the size of A and B.

Not surprisingly, the proof of this Theorem (given in Section 5.6) leverages
the fact that when each element has individual high min-entropy, hashing each
element acts as a strong randomness extractor, thus resulting in sufficient random
noise for privacy.
DDP over a polynomial-size universe. However, this assumption that every
item has high min-entropy is quite strong. For example, consider the setting
where each item in B is chosen from a polynomial-size universe. In this case,
while individual items cannot have much min-entropy, the honest party’s set
may still collectively have high min-entropy as long as it is large enough. Thus,
for our third result, we analyze what happens under this weaker assumption that
only the full honest set, instead of each individual item, has high min-entropy.

Note that in this case, we cannot apply the hash function as randomness
extractor technique. This is because in order to guarantee that the randomness
extractor yields output that is negligibly close to uniform, we must lose super-
logarithmic in n bits of entropy from each input. However, in the case we are
currently considering, each element has at most O(log n) bits of min-entropy.
Further, we in fact have no guarantee that each element has individually high
min-entropy (since the elements are not necessarily independent), but only that
the total min-entropy of the non-intersection items is high. Nevertheless, we show
FminH still achieves DDP, by proving a new strong chain rule for min-entropy
(see Section 5.8.5).

10We use cryptographic hash functions to instantiate the hashes in the random oracle model.
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Specifically, we consider the following class of distributions C over secret sets
R of size n:

• Let U be a universe of polynomial size n · ℓ, where ℓ = Ω(n3).

• R is chosen uniformly from all subsets of U of size n.

• In general, to relax the uniformity above, we additionally allow arbitrary
leakage L = L(R) computed on R, such that the length of the leakage L is
at most |L| ≤ c · n log ℓ, for a fixed constant c ∈ (0, 1).

• We consider the resulting conditional distribution D on R given leakage L.

Theorem 5.4 (Informal). Assume the set R is drawn from a distribution D ∈ C.
Then the min-hash protocol in the random oracle model (corresponding to
functionality FminH) preserves (ϵ, δ)-DDP for negligible δ, as long as the size of
the intersection is a constant fraction of the size of A and B.

On spoiling bits and leakage resilience. Consider a distribution over
sets of n elements R = R1, . . . , Rn, where each Ri is chosen from a universe of
size ℓ ∈ Ω(n). Note that the set R can have min-entropy Ω(n lg(ℓ)) while
it can still be possible that for every i, the marginal distribution over Ri

has only constant min-entropy (see Example 1.1 in [67]). To deal with such
situations, Skórski [164] proves a theorem showing the existence of “spoiling
bits.” Namely, given R1, . . . , Rn, some additional information known as spoiling
bits can be released such that, conditioned on this information, for each i ∈ [n],
the distribution of Ri conditioned on R<i, where R<i denotes (R1, . . . , Ri−1),
is nearly flat (in the sense that the min/max entropy gap is at most a small
additive constant). Further, the total number of spoiling bits that are released
is small.

It is not hard to use Skórski’s result to show that if R starts out with
sufficiently high min-entropy then for a large fraction of i (those in the set
V ⊆ [n]), the distribution of Ri conditioned on R<i has high min-entropy of at
least Ω(log(n)), while the remaining indices (those in the set W = [n] \ V )) may
have low min-entropy.

Unfortunately, this result is very brittle in the sense that the flatness condi-
tions hold only for this particular distribution of R conditioned on the spoiled
bits. Specifically, despite the flatness condition being satisfied for this distri-
bution, the random variables Ri are not independent of one another. Thus, if
additional information is leaked on Rj after the spoiling bits are computed, then
the flatness guarantees may no longer hold for Ri.

In our setting, we require additional leakage {ℓi}i∈W on the elements {Ri}i∈W .
One issue is that the set W (i.e., low min-entropy elements conditioned on the
spoiling bits) is only known after the spoiling bits are computed. This leaves us
with a dilemma:

• Leaking {ℓi}i∈W additionally after the spoiling leakage can destroy the
flatness property.
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• On the other hand, we cannot leak {ℓi}i∈W before computing the spoiling
bits, since we don’t know the set W yet! We could leak from all the blocks
(R1, . . . , Rn), but this may deplete the entropy needed from the random
variables {Ri}i∈V .

To solve this problem, we prove a new variant of the spoiling lemma that
computes the spoiling bits at the same time as the additional leakage ℓi for
i ∈ W is computed so that the spoiling bits also contain {ℓi}i∈W , while still
maintaining the flatness condition. The types of leakage that can be captured
are essentially those such that the leakage ℓi for i ∈ W can be expressed as a
function of Ri and the leakages {ℓj : j > i, j ∈W}. It turns out that the leakage
we need for our result has this form.

We state our theorem in general terms as we believe it may find further
applications in leakage resilient cryptography. For the formal theorem statement
see Theorem 5.14.
A note on composition. One known weakness of the DDP definition is the
lack of a general composition theorem [14]. However, for the specific setting of
our min-hash protocols we can leverage the small output of min-hash to argue
composition properties after leakage of several outputs. Specifically, suppose that
the adversary executes a min-hash protocol with (ϵ, δ)-DDP security twice with
the same honest party’s input both times. Since each min-hash protocol outputs
a single number between 0 and k (i.e., lg k bits long), when we apply Theorem 3,
the leakage profile increases to a total of at most L + 2 · lg k bits. However,
according to Theorem 3, as long as |L|+2 lg k ≤ c ·n lg ℓ, each protocol execution
will preserve DDP, and therefore the composition of the two protocol executions
will preserve (2ϵ, 2δ)-DDP. In general, assuming that the initial leakage |L| is a
small constant, this type of DDP composition will hold for O(n · lg ℓ

lg k ) executions.
Comparison to other approaches. We note that an alternative approach
to get a differentially-private estimate of the Jaccard index is via mergeable
cardinality estimation sketches (e.g. [101]) to compute (an approximation of)
the set intersection cardinality and use this via the inclusion-exclusion principle
to compute the Jaccard index. We give a detailed comparison of error from our
protocol vs. the best known cardinality estimator [101] in Section 5.9.

5.2 Related Works

Differential privacy (DP). Differential privacy protects the privacy of individ-
uals by limiting an adversary’s ability to learn information about an individual
input from the output of a computation [60,63]. For a good overview of differ-
ential privacy and many of the algorithms to achieve it, both in the standard
curator setting and in distributed settings, we refer the reader to the book by
Dwork and Roth [66].
Optimizing secure computation using differential privacy. Another
direction of work has considered how to use DP to reduce the cost of secure
computation, especially when we aim for DP-style guarantees from the final
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output. [17] first proposed such optimization for the problem of secure sum-
mation. [100] and [94] applied the differential privacy relaxation to improve
efficiency of set-intersection protocols. [133], and [134] consider graph-parallel
computations and design more efficient solutions with differential private leakages.
[40] consider classic tasks like sorting, merging, and range-query data structures
with differential privacy relaxation. [92] consider multiparty shuffle that allows
a differentially private leakage and shows that it suffices to achieve end-to-end
differential privacy in the shuffle model of DP.
Private sketching. Sketching algorithms, or “sketches” are sublinear space
algorithms for approximating certain properties of large inputs or data streams.
The main idea behind sketching algorithms is to generate a compact summary
data structure that allows for efficient storage, merging, and processing.

Some recent works [15,16,24,46,56,101,104,127,137,138,145,165,179,189]
have additionally observed that sketches can often also aid in achieving privacy
as the inherent loss of information in the sketch can essentially make the sketch
itself be differentially private or to only require a little additional noise.

A line of research pertinent to our work involves constructing private sketches
for set cardinality estimations [124,142,144,168,169]. Recently, [101] proposed a
private mergeable sketch that can be used to estimate the size of the intersection
and union of sets.
Secure approximation. Secure approximation studies what functions can be
securely approximated without revealing anything beyond the true output [76,
99]. While this notion is quite different from that of differentially private
approximation that we consider here, we note that our FHE-based protocol
described in Section 5.5 additionally achieves this.
Adversarially robust property-preserving hash functions and robust
sketching. Property-preserving hash (PPH) functions allow compressing large
input x into a short digest h(x) such that some property P (x, y) can be computed
given only h(x) and h(y). Adversarially-robust PPH [30,80,81,103] aim to further
guarantee that P (x, y) is correctly computed (i.e., robust) even if the inputs x
and y are chosen after the hash function h is fixed. A related concept of robust
sketching, e.g. [9,20] aims to construct sketches that provide good approximations
even when inputs are chosen after the randomness of the sketch is fixed.

Both of these approaches are similar to our work in that they also study the
consequences of making the choice of hash (or sketch) known to the adversary.
However, these works focus on robustness to adversarial inputs, while we instead
focus on the privacy of the output when the adversary additionally sees the hash
functions.
Differentially private min-hash DP min-hash aims to make min-hash
approximation differentially private by adopting standard DP mechanisms such
as adding DP noises to the output to hide individual items in the input sets. In
particular, [10] achieves local DP (LDP) min-hash by either adding Laplacian
noise, or using generalized randomized response to perturb the minhash vectors.
Other than this, there are also other earlier efforts. For example, [185] attempts
to use a flawed exponential mechanism to achieve DP. This leads to a faulty claim
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of ϵ-DP, as pointed out in [10]. [184] correctly applies exponential mechanism.
However, this results in a large amount of noise being added to the results.

5.3 Preliminaries
A function g is negligible, denoted negl(·), if for every positive integer c, there is
an integer nc such that for all n ≥ nc we have g(n) ≤ 1/nc. Let κ denote the
security parameter.
Range of hash functions and the random oracle model. We model each
hash function as a random oracle that maps each item to a real value in [0, 1],
and the output of the hash function is long enough to ensure that the probability
of any two different items having a hash collision is negligible.
Notation. Let U denote the universe of input elements. In this paper, we
will consider two input sets A,B ⊆ U . Let nA = |A|, nB = |B|. Let I = A ∩B,
nI = |I|. We will also let B+x∗ = B ∪ {x∗}.

Let Eq be an equality function; i.e., Eq(a, b) = 1 if a = b and 0 otherwise. For
a hash function h and a set A, we let h(A) := {h(a) : a ∈ A}. Let B(m, p) be the
binomial distribution with m trials and each trial having success probability p.
Basic min-hash functionality. We describe the basic min-hash functionality
in Figure 17. In this work, we will consider several variants and consider privacy
implications.

Protocol 17 The Basic Min-Hash Functionality FminH

The functionality is parameterized with a random oracle O.

Input: P1 and P2’s input vectors A = (xA
1 , . . . , x

A
nA

) and B = (xB
1 , . . . , x

B
nB

).

Minhash:

1. Randomly sample prefix pre, which is used to define hash functions
h1, h2, . . . , hk, where for i ∈ [k], hi(·) := O(pre||i||·).

2. For input A, compute the min-hash vector (uA
1 , u

A
2 , . . . , u

A
k ) as follows:

For each iteration j ∈ [k]:

i. For each item xA
i ∈ A, compute yAi,j = hj(x

A
i ).

ii. Compute the min-hash for iteration j; that is, uA
j = min{yAi,j :

i ∈ [nA]}.

3. Likewise, compute another min-hash vector (uB
1 , u

B
2 , . . . , u

B
k ) for input B

similarly.

4. Compute c =
∑k

j=1 Eq(u
A
j , u

B
j ).

Output: Return (pre, c) to P1 and P2.
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Differential privacy. The definitions of (ϵ, δ)-differential privacy are given
below.

Definition 5.5 ((ϵ, δ)-indistinguishablity). Two random variables X and Y are
(ϵ, δ)-indistinguishable (denoted as X ≈ϵ,δ Y ) if, for all events S, we have

Pr[X ∈ S] ≤ eϵ · Pr[Y ∈ S] + δ, Pr[Y ∈ S] ≤ eϵ · Pr[X ∈ S] + δ.

Definition 5.6 (Computational (ϵ, δ)-indistinguishablity). Two random vari-
ables X and Y are computationally (ϵ, δ)-indistinguishable (denoted as X

c
≈ϵ,δ Y )

if, for any polynomial time adversary A, it holds

Pr[A(X) = 1] ≤ eϵ · Pr[A(Y ) = 1] + δ, Pr[A(Y ) = 1] ≤ eϵ · Pr[A(X) = 1] + δ.

Definition 5.7 ((Computational) (ϵ, δ)-differential privacy). Let X be an input
space and ≃X be a relation capturing the notion of neighboring inputs. Let
M : X → Z be a randomized algorithm that takes input x ∈ X and outputs a
value over Z. We say that the mechanismM is (ϵ, δ)-differentially private if the
following holds:

∀x, x′ ∈ X s.t. x ≃X x′ : M(x) ≈ϵ,δ M(x′).

The mechanism M is (ϵ, δ)-computationally differentially private if ∀x, x′ ∈
X s.t. x ≃X x′ : M(x)

c
≈ϵ,δ M(x′).

Definition 5.8. The global sensitivity of a function f : N|X | → Rk is:

∆f = max
X,Y ∈N|X|,∥X−Y ∥1=1

∥f(X)− f(Y )∥1

Definition 5.9. The Laplace Distribution (centered at 0) with scale b is the
distribution with probability density function: Lap(x|b) = 1

2be
−|x|/b.

We will write Lap(b) to denote the Laplace distribution with scale b. Given
any function f : N|X | → Rk, the Laplace mechanism that adds noise drawn
from Laplace distribution; that is, given an input database X, the mechanism
outputs f(X) + (Y1, . . . , Yk), where Yi are i.i.d. random variables drawn from
Lap(∆f/ϵ). It is known that the Laplace mechanism achieves (ϵ, 0)-differential
privacy [66, Theorem 3.6].
Distributional differential privacy (DDP). We adapt the original defini-
tion [14] for our purpose to consider a two-party protocol that takes sets as input
more explicitly. Specifically, we consider a computational indistinguishability
variant for our DDP definition.

Definition 5.10 (View of a party in a two-party functionality). Given a two-
party functionality F with parties P1 and P2, let viewFP1

(A,B) denote the view
of P1 for the execution of functionality F with A and B being the input of P1

and P2 respectively. In particular, viewFP1
(A,B) consists of the following (the

view of P2 is defined similarly):
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• The input A of P1, the private random coins of P1, and the output of the
functionality.

• If the functionality is in the random oracle model, we allow a semi-honest
P1 to make a polynomial number of arbitrary queries to the random oracle
and to add the input/output information to its view.

Definition 5.11 (DP and DDP of a two-party functionality). A two party
functionality F is (computationally) (ϵ, δ)-DP against an adversary corrupt-
ing P1, if for every (A,B) and every x∗ ∈ U , it holds that viewFP1

(A,B) is
(compuatationally) (ϵ, δ)-indistinguishable from viewFP1

(A,B+x∗).
Let X denote a random variable for two sets over universe U . Let Z denote

the random variable measuring the additional auxiliary information known
to the adversary. A two party functionality F is (computationally) (ϵ, δ,∆)-
DDP against an adversary corrupting P1, if for every distribution D ∈ ∆ on
(X ,Z), every (X = (A,B), Z) in the support of (X ,Z) and every x∗ ∈ U , it
holds that

(
viewFP1

(A,B), Z
)

is (computationally) (ϵ, δ)-indistinguishable from(
viewFP1

(A,B+x∗), Z
)
. Here, (A,B) and Z are sampled from D, and each party

may use additional randomness.
DP and DDP against an adversary corrupting P2 is defined symmetrically.

Tail bound for a Binomial distribution. We will use this well-known
inequality.

Lemma 5.12 ( [59]). Consider a Binomial distribution B(n, p). We have

Pr
X∼B(n,p)

[X ≥ k] ≤
(
n

k

)
pk.

5.4 Min-Hash with DP
Since the noiseless min-hash functionality cannot achieve DP as discussed above,
we consider a noisy variant that provides DP. We first consider the global
sensitivity of FminH and use the standard Laplace mechanism to provide DP.

5.4.1 Sensitivity

Let B = (xB
1 , . . . , x

B
nB

) and B+x∗ = (xB
1 , . . . , x

B
nB

, x∗), and WLOG, we consider
two neighboring inputs (A,B) and (A,B+x∗); the case in which x∗ is added into
A can be shown symmetrically.

We show how changing the input sets from B to B+x∗ affects the final
count. Let x∗ be the (nB + 1)-th element of B+x∗ . Consider iteration j of
Step 2 in Figure 17. Since we model each hash function hj as a random oracle,
(yB1,j , . . . , y

B
nB+1,j) will be uniformly distributed. Now, consider how the min-

hash uB
j is computed. The value x∗ from B+x∗ can affect the min-hash uB

j (and
thereby the final count c), only if yBnB+1,j is smaller than (yB1,j , . . . , y

B
nB ,j).

83



The probability that yBnB+1,j will be less than all yBi,js is at most 1/(nB + 1)
by a symmetry argument. Note the final output is computed as the sum of k of
these trials. Let

Sx∗ =

{
j ∈ [k] : yBnB+1,j < min

i∈[nB ]
{yBi,j}

}
.

Therefore, we consider a binomial distribution |Sx∗ | ∼ B(k, 1/(nB + 1)), which
represents how many iterations j cause x∗ to be the min-hash uB

j . In other
words, |Sx∗ | captures the sensitivity of min-hash. Therefore, given the failure
probability δ, the following measure can be used as the global sensitivity:

σ(δ, k, nB) := argmin
s
{s : Pr

h1,...,hk

[|Sx| ≥ s] ≤ δ}

Lemma 5.13. For any {xB
i }i∈[nB ] and x ∈ U , we have σ(δ, k, nB) ≤

(
k
s

)
·(

1
nB+1

)s
.

Proof. The result immediately follows from Lemma 5.12.

According to the above lemma, Asymptotically, with k = Ω(κ), we have
σ(δ = negl(κ), k, n = Θ(k2)) = O(lg lg k).

5.4.2 Noisy Min-Hash

We consider a variant Fnoisy-minH of FminH described in Figure 18.

Protocol 18 Noisy Min-Hash Functionality Fnoisy-minH

1. Run FminH and let (pre, c) be the output from FminH.

2. Sample ζA and ζB from Laplace distributions Lap(σ(δ/2,k,nA)
ϵ ) and

Lap(σ(δ/2,k,nB)
ϵ ) respectively. Let coinsA and coinsB the random coins

that the functionality used to sample them.

3. Let ℓA and ℓB be the minimum integers satisfying Pr[|ζA| > ℓA] ≤ δ/2
and Pr[|ζB | > ℓB] ≤ δ/2. If |ζA| > ℓA, then truncate it so that it holds
|ζA| = ℓA. Likewise, truncate ζB if necessary.

4. Let r(·) be a rounding function. Output (pre, coinsA, r(c+ ζB)) to P1 and
(pre, coinsB , r(c+ ζA)) to P2.

Theorem 5.1. Fnoisy-minH is (ϵ, δ)-DP against an adversary corrupting either
party.
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Proof. Based on the definition, σ(·) works as the upperbound on the sensitivity
with probability 1− δ/2. For the honest party’s noise (i.e., ζA or ζB), trunca-
tion takes place with probability at most δ/2. Therefore, using the standard
Laplace mechanism [66, Theorem 3.6], and since DP is preserved even with
post-processing, Fnoisy-minH provides (ϵ, δ)-DP.

A two party protocol πNMH securely realizing Fnoisy-minH . We construct a
two party protocol that securely realizes functionality Fnoisy-minH. The protocol
takes advantage of an ideal functionality Fpsi-ca of private set intersection cardi-
nality (PSI-CA) [53] that computes the exact cardinality of the intersection of
the two input sets, as described in Figure 19.

Protocol 19 Functionality of Private Set Intersection Cardinality Fpsi-ca
Input: P1 has a set A and P2 has a set B.
Output: Return |A ∩B| to P1 and ⊥ to P2.

In particular, in order to compute the noisy min-hash match counts, the
parties construct two sets consisting min-hash values and additional dummy
elements and then run Fpsi-ca on these sets. To reflect the Laplace noise into
elements of a set, the protocol uses unary encoding, which introduces some ineffi-
ciency. However, as the tail probability of Laplace noise decreases exponentially,
the unary encoding length can be bounded with a small value, and the protocol’s
overall efficiency is still maintained. Detailed steps of the protocol are provided
in Figure 20.

It is worth noting that the above task could also be implemented using a
generic two-party computation (2PC) protocol. However, [53] proposed an
efficient PSI-CA protocol that outperforms 2PC protocols for small input sizes
(using the start-to-finish comparison including the 2PC preprocessing steps). See
Section 5.9.1 for more details of this PSI-CA protocol. Since our input sets are
small, we chose to present protocol πNMH using the PSI-CA functionality.

We will prove below that protocol πNMH securely realizes Fnoisy-minH. It implies
that protocol πNMH is also (ϵ, δ)-computational-DP [163]. The main benefit of
the protocol is that the hash computations can be computed locally and the
communication complexity of the protocol is sub-linear in nA and nB even when
the protocol implementing Fpsi-ca has a linear communication complexity.

Proposition 5.2. Protocol πONMH described in Figure 20 securely realizes
Fnoisy-minH in the semi-honest model.

Proof. First note that the protocol will correctly compute cA = r(c+ ζB) and
cB = r(c + ζA) as in Fnoisy-minH. For privacy, when P1 is corrupted, the only
message to simulate is cA, the output from Fpsi-ca. Since the protocol is in the
Fpsi-ca hybrid, this message cA can be perfectly simulated by using the output
from Fnoisy-minH. The simulator can also make sure that pre and ζA are correctly
sampled by using pre and coinsA from Fnoisy-minH. For corrupted P2, first the
simulator makes sure that pre and ζB are correct by using pre and coinsB from
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Protocol 20 Two-party Noisy Min-hash Protocol πONMH

Input: P1 and P2’s input vectors A = (xA
1 , . . . , x

A
nA

) and B = (xB
1 , . . . , x

B
nB

).

Protocol:

1. P1 samples prefix pre and sends it to P2. This prefix is used to define hash
functions h1, h2, . . . , hk, where for i ∈ [k], hi(·) := O(pre||i||·).

2. P1 computes the min-hash vector (uA
1 , u

A
2 , . . . , u

A
k ) locally exactly as de-

scribed in FminH. Likewise, P2 locally computes (uB
1 , u

B
2 , . . . , u

B
k ).

3. P1 (resp. P2) samples ζA (resp. ζB) from Laplace distribution
Lap(σ(δ/2,k,nA)

ϵ ) (resp. Lap(σ(δ/2,k,nB)
ϵ )). Let coinsA (resp. coinsB) be

the random coins that P1 (resp. P2) used in sampling the noise ζA (resp.
ζB). As in Fnoisy-minH, parties truncate ζA and ζB based on ℓA and ℓB , if
necessary.

Let ZB be a 2ℓB-bit vector representing the unary encoding of r(ζB + ℓB).
That is, the first r(ζB + ℓB) bits are 1’s and the remaining bits are 0’s. We
let ZB

j denote the jth bit of ZB .

4. P1 and P2 invokes Fpsi-ca with the following inputs:

• P1’s input: {(i, uA
i ) : i ∈ [k]} ∪ {(j + k, 1) : j ∈ [2ℓB ]}

• P2’s input: {(i, uB
i ) : i ∈ [k]} ∪ {(j + k, ZB

j ) : j ∈ [2ℓB ]}

Let out be the output to P1 from functionality Fpsi-ca. Set cA = out− ℓB .

5. P1 computes c+ = cA + r(ζA) and sends c+ to P2. P2 computes cB =
c+ − r(ζB).

Output: P1 and P2 output (pre, coinsA, c
A) and (pre, coinsB , c

B) respectively.

Fnoisy-minH. The message c+ = cB + r(ζB) can also be perfectly simulated, since
the simulator can obtain cB from Fnoisy-minH.

5.5 Noiseless Protocol in the Private Hash Setting
In Figure 21, we describe the min-hash protocol FprivH in the private hash setting.
We show that if J(A,B) is a constant, there exist parameter regimes where
FprivH without noise satisfies differential privacy. Our observation is that the
final count c follows a binomial distribution in the private hash setting, which
can be treated as noise to obscure the sensitivity.

Theorem 5.3. For any constant ϵ > 0, if k = k(ϵ, κ) ∈ Ω(κ), nA/k ∈
Ω(κ), nB/k ∈ Ω(κ), and J(A,B) ∈ (0, 1) is a constant independent of κ, then
FprivH is (ϵ, δ)-DP with δ ∈ negl(κ).
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Protocol 21 Min-Hash in the Private Hash Setting FprivH

FprivH works exactly the same as FminH except that it outputs only the final
count c (with the prefix pre hidden to the participants).

Proof. WLOG, let B = (xB
1 , . . . , x

B
nB

) and B+x∗ = (xB
1 , . . . , x

B
nB

, x∗). Let
p = J(A,B), s = σ(δ, k,min(nA, nB)) = O(lg lg κ). Recall the definition Sx∗

in Section 5.4.1 and let Kx∗ = [k] \ Sx∗ . Note that for the iterations in Kx∗ ,
the min-hash matches (denoted as cKx∗ ) for both (A,B) and (A,B+x∗) will be
identically distributed. This match count cx∗ will work as an additive noise.
Since h1, . . . , hk are private, we have cKx∗ ∼ B(k−s, p). By applying Lemma 5.4
below, we conclude that FprivH is differentially private.

Lemma 5.4. Consider a Binomial distribution B(n, p), where n ∈ Ω(κ) and p ∈
(0, 1) is a constant independent of κ. Then, for any constant ϵ and s = O(lg lg κ),
there are a, b ∈ [n] with a < np < b such that

• For any ℓ ∈ [a, b], e−ϵ ≤ PrX∼B(n,p)[X=ℓ]

PrX∼B(n,p)[X+s=ℓ] ≤ eϵ.

• For any ℓ ̸∈ [a, b], Pr[B(n, p) = ℓ] = negl(κ) and Pr[B(n, p) + s = ℓ] =
negl(κ).

The proof of the lemma is found in Section 7.3.1.
Remark. While FprivH could be considered as a trusted curator model, a
two-party protocol realizing it can be constructed without relying on a trusted
curator. In particular, the computation of (uA

1 , . . . , u
A
k ) (including all n hash

evaluations) can be performed locally under a threshold FHE so that only the
encryption of them may be sent to party B. Then, by computing the remaining
steps under FHE and delivering the result using a threshold decryption, the
protocol will securely realize FprivH in the semi-honest setting. We note that the
resulting protocol has sublinear communication in n since only the k inputs to
the comparisons need to be communicated.

5.6 DDP of FminH

In this section, we show that there are parameter regimes where the public
min-hash protocol FminH can satisfy DDP without adding noise. In Figure 22,
we first describe the family of distributions we consider in the context of our
min-hash protocol. The distribution models a situation in which the adversary,
having corrupted one of the two parties, has access to the view of the party and
even the actual intersection. However, the adversary does not know the other
party’s input set (except from the intersection).

Below, we show that FminH achieves DDP under certain circumstances.

Theorem 5.5. For every constant ϵ > 0, consider FminH in the random oracle
model with k = k(ϵ, κ), where k ∈ Ω(κ). Let R = B \ I, each element of which
has min-entropy at least κ. Let nA/k, nB/k ∈ Ω(κ), and nI/nA ∈ (0, 1) is a
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Protocol 22 Distribution Family ∆PH

Parameterized with (nA, nB , nI), a distribution DA,B in this family samples
(A,B) such that

• Letting I = A ∩B, it holds that |A| = nA, |B| = nB , and |I| = nI

Output:

• The inputs to the parties P1 and P2 are A and B respectively.

• Give I to the adversary as the auxiliary information.

constant independent of κ. Then, FminH is computationally (ϵ, δ,∆PH)-DDP
against an adversary corrupting P1 with δ ∈ negl(κ). DDP against an adversary
corrupting P2 holds when the parameters are set symmetrically.

Theorem 5.6. For security parameter κ, every constant ϵ > 0, and every
constant γ ∈ (0, 1), consider FminH in the random oracle model with k = k(ϵ, κ),
where k ∈ Ω(κ · lg lg κ). Let R = B \ I be a set of size nR, with nR/k

2 ∈ Ω(κ).
Let the universe U be of size nR · ℓ, where ℓ = Ω(n3

R). Assume the secret set
R is chosen chosen uniformly from all subsets of U of size nR, conditioned on
arbitrary leakage on R of length L, where nR lg ℓ − L ≥ 8nR

9 lg ℓ + 2nR. Let
|I| ∈ Θ(n). Then the output of FminH achieves computational (ϵ, δ,∆PH)-DDP
with δ ∈ negl(κ) against an adversary corrupting P1. DDP against an adversary
corrupting P2 holds when the parameters are set symmetrically.

Remark. An easy way to realize FminH is to have each party locally hash their
inputs using the k public hash functions and to locally compute the minimum
for each iteration. The parties can then run a simple two-party computation
to compute the number of times these minimums match. We note that this
protocol has communication and computation that is sublinear in the input size
as it only depends on the number of hash functions. By Theorems 5.5 and 5.6
this protocol achieves DDP when the conditions of either of the theorems are
satisfied.

5.7 Proof of Theorem 5.5
We first give the intuition of the proof. We assume that each of the non-
intersecting elements has high min-entropy. WLOG, consider an adversary
corrupting P1. The view of the adversary will be

viewFminH

P1
(A,B) := (A, c, h1, . . . , hk).

As shown above, the sensitivity can be upper-bounded by a small value s.
Unlike FprivH, however, when we show the existence of sufficient noise from the

remaining iterations, we need to take the additional leakage into consideration.

88



First, since the hash functions are public, iterations are no longer independent
of each other as needed by the analysis in Section 5.5. We address this issue by
employing the fact that each of the non-intersecting items has high min-entropy.
In the random oracle model, as long as the adversary does not query hash
function h on some point x, h(x) is uniformly random to the adversary. Since the
non-intersecting items have high min-entropy, the adversary is negligibly likely
to query any of them to the hash functions, thus guaranteeing independence.
Good iterations and Poisson Binomial distribution. Now, to see how the
remaining iterations still hide the sensitivity even with the public hash functions,
let R = B \ I. For the remaining k − s iterations, the high min-entropy of each
element in R will jitter the final count. In particular, consider the jth hash
function hj in the protocol (among the k − s remaining iterations) and let

vAj = minhj(A), vIj = minhj(I), vRj = minhj(R).

Suppose vAj = vIj . Then, if vRj ≥ vIj , the min-hash uA
j of A will be equal to the

min-hash uB
j of B (both of which are equal to vIj ) and the final count c will

be incremented due to this jth iteration. However, if vRj < vIj , then it will be
uA
j ̸= uB

j , and the final count will not be incremented. This way, the distribution
of vRj will jitter the final count. The above discussion can be formalized into the
following definition.

Definition 5.7 (θ-good iteration). Let nR = nB − nI , we define
goodθ(hj , A, I, nB) to be true if and only if the following holds:

minhj(A) = minhj(I), and minhj(I) ∈

[
1−

(
1

2
+ θ

)1/nR

, 1−
(
1

2
− θ

)1/nR
]
.

The second condition of the definition requires that minhj(I) is somewhere
in the middle (parameterized by θ ∈ Θ(1)) so that the distribution of R (i.e.,
random vRj ) may reduce the final count with a decent chance (and also keep
the count with a decent chance). As long as nI/nA is a constant fraction, there
are sufficiently many θ-good iterations, although we lose some iterations. In
particular, if we let kg be the number of good iterations, we have kg = Θ(k).

With public hash functions and thereby minhj(I) being leaked to the adver-
sary, it turns out that the noise from the kg iterations follows a Poisson Binomial
distribution, which is a generalization of a Binomial distribution where each trial
has a different success probability. However, using the techniques of [42], we can
still show that this distribution works as a good noise to hide the private data.

5.7.1 Proof

WLOG, we consider two neighboring inputs (A,B) and (A,B+x∗). DDP for the
case in which x∗ is added into A can be shown symmetrically. We prove the
theorem by a hybrid argument. In particular, we define a slightly different ideal
functionality FminH

(1) as follows:
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• Let FminH
(1) be the same as FminH except that for each xB

i ∈ B \A, each
element in {yBi,j}j is chosen uniformly at random from [0, 1].

We set up the following hybrids. We will argue that for any x∗ ∈ U and over
(A,B, I)← ∆PH, it holds

(viewFminH

P1
(A,B), I)

c
≈ (viewFminH

(1)

P1
(A,B), I)

≈ϵ,δ (viewFminH
(1)

P1
(A,B+x∗), I)

c
≈ (viewFminH

P1
(A,B+x∗), I)

for any constant ϵ > 0 and for some δ ∈ negl(κ), as long as each element in B \ I
has high min-entropy.

Recall that the min-entropy of each element xB
i with i ∈ B \A is at least κ.

Therefore, the probability that any adversary making at most polynomially many
oracle queries queries any xB

i is negl(κ). Conditioned on the adversary not query-
ing any such xB

i , any yBi,j for j ∈ [k] is chosen uniformly random from U . The same

argument shows viewFminH

P1
(A,B+x∗), I)

c
≈ (viewFminH

(1)

P1
(A,B+x∗), I). Therefore,

we are left only to show (viewFminH
(1)

P1
(A,B), I) ≈ϵ,δ (viewFminH

(1)

P1
(A,B+x∗), I).

DDP of FminH
(1). We show (A, I, h1, . . . , hk, c) ≈ϵ,δ (A, I, h1, . . . , hk, c+x∗),

where c is the final count from FminH
(1)(A,B) and c+x∗ is the final count from

FminH
(1)(A,B+x∗). We show how to leverage the uncertainties of xB

i ∈ R = B\A
so that good iterations work like the needed noise to guarantee DP.

Lemma 5.8. For any A, I, nB and nR = nB − nI , we have

pθ
def
= Pr

h
[goodθ(h,A, I, nB)] ≥

((
1

2
+ θ

)nA
nR

−
(
1

2
− θ

)nA
nR

)
· nI

nA
.

The proof is found in Section 7.3.2. This lemma shows that a random hash
leads to a good iteration with probability pθ, which is constant in our setting
based on the assumption about nA, nI , nR.

Recall that Sx∗ was the random variable that represents the set of iterations
j such that the min-hash uB

j comes from x∗ when P2’s input is B+x∗ . From
Lemma 5.13, with overwhelming probability |Sx∗ | = O(lg lg κ).

Now, fix A, I, x∗ and h1, . . . , hk and let Gθ be the set of iterations j in which
a θ-good event takes place; i.e.,

Gθ = {j ∈ [k] : goodθ(hj , A, I, nB)} .

Let Kθ = Gθ \ Sx∗ . The following lemma shows that the θ-good events takes
place Θ(κ)-many times, with overwhelming probability.

Lemma 5.9. Suppose k = Θ(κ), nB = Ω(κ2), and pθ ∈ Θ(1). Let s = |Sx∗ |.
Then, we have

Pr
h1,...,hk

[
|Kθ| >

2

3
(k − s)pθ

]
≥ 1− negl(κ).
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The proof is found in Section 7.3.3.

Our goal. For a set W , define cW
def
=
∑

j∈W Eq(uA
j , u

B
j ). Let Kθ := [k] \Kθ.

Note that the contributions to the final output can be divided into two parts:

• cKθ
: The contribution from the iterations in Kθ, which contains all the

θ-good iterations such that x∗ does not hash to the minimum across B+x∗ .

• cKθ
: The contribution from all the remaining iterations

Essentially, for any final count q, we are interested in comparing the two
probabilities:

Pr[cKθ
+ cKθ

= q] and Pr[c+x∗

Kθ
+ c+x∗

Kθ
= q].

Following our discussion on sensitivity in Section 5.4, the difference of cKθ

and c+x∗

Kθ
is upper-bounded by s = O(lg lg κ). Note that we have cKθ

= c+x∗

Kθ

because j ∈ Kθ implies j ̸∈ Sx∗ . Therefore, we only need to analyze the single
distribution of cKθ

as a noise and compare the following two probabilities:

Pr[cKθ
= q] and Pr[cKθ

+ s = q].

Distribution of cKθ
. We have cKθ

=
∑

j∈Kθ
cj , where cj = Eq(uA

j , u
B
j ).

Note that since we have j ∈ Kθ, a θ-good event takes place in iteration j, i.e.,
minhj(A) = minhj(I).

Let γj = 1 − minhj(I). Note that the hash of each item R is randomly
distributed in FminH

(1). Therefore, the probability that cj = 1 is (γj)nR , in which
case every hash of items in R must be at least minhj(I).

Let η−θ = 1/2− θ and η+θ = 1/2 + θ. Since j is a good iteration, we have
(γj)

nR ∈ [η−θ, η+θ]. Therefore, letting pj = (γj)
nR , we have cj ∼ Ber(pj), where

Ber denotes the Bernoulli distribution. Since these Bernoulli distributions are
independent from each other, can apply Lemma 5.10 below to conclude that
CKθ

≈ϵ,δ CKθ
+ s.

For j ∈ [n], consider cj ∼ Ber(pj). With pJ = {pj}nj=1, let PB(n, pJ ) denote
the distribution of

∑
j∈[n] cj . This distribution is called a Additive Poisson

Binomial distribution.
We conclude the proof by showing that the Additive Poisson Binomial

distribution with appropriate parameters satisfies the following DP-like property.

Lemma 5.10. Consider an Additive Poisson Binomial distribution PB(n, pJ),
where n ∈ Ω(κ) and for each pj , it holds that pj ∈ [1/2 − θ, 1/2 + θ] where
θ ∈ (0, 1/2) is a constant independent of κ. Then, for any constant ϵ and
s = Θ(lg lg κ), there are a, b ∈ [n] such that

• For any ℓ ∈ [a, b], e−ϵ ≤ Pr[PB(n,pJ )=ℓ]
Pr[PB(n,pJ )+s=ℓ] ≤ eϵ.

• For any ℓ ̸∈ [a, b], Pr[PB(n, pJ ) = ℓ] = negl(κ) and Pr[PB(n, pJ ) + s = ℓ] =
negl(κ).

The proof is found in Section 7.3.4.
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5.8 Highlights of Proof of Theorem 5.6
Here, we highlight only the important parts of the proof of Theorem 5.6. The
full proof can be found in Section 7.3.5. We show that FminH satisfies DDP even
when the size of the universe U of size nR · ℓ is polynomial in κ with ℓ = Ω(n3

R),
and the secret set R is chosen from the uniform distribution on U , conditioned
on arbitrary leakage on R of length L, where L ≤ nR(lg ℓ− 3 lg nR− 2). WLOG,
we assume that the adversary corrupts P1.

We set n′R := nR/3; looking forward, it is the size of a subset R′ ⊂ R, each
of whose elements has high remaining min-entropy even after leakage (that we
will define in the proof) is considered.

5.8.1 Min-hash Graph

Consider running the min-hash protocol FminH with k iterations such that kg of
them belong to Gθ. For this, we consider all the hash outputs in two different
stages and define the following sets:

H1 = {hj(A+x∗)}kj=1, H2 = {hj(U \A+x∗)}kj=1.

Since we are in the random oracle model, each hash value is chosen uniformly at
random. For our analysis, we construct the following bipartite graph (X ,Y, E),
which we call the min-hash graph, based on the sets A, I and x∗ along with the
hash functions as follows:

MinhashGH1
(A, I, x∗, H2):

1. Set X = U \ A+x∗ . In other words, the graph considers all potential
elements that could be in R = B \ I. A distribution of R is equivalent to a
distribution of how to choose nR nodes from X . Note that H1 determines
Gθ (based on the hash values of A and I). We set Y = Gθ. In other words,
Y corresponds to all the good iterations that could potentially positively
contribute to the final count.

2. Let pj = minhj(I). Use H2 to determine the set of edges:

E = {(i, j) : (i, j) ∈ X × Y and hj(xi) < pj = minhj(I)}.

In other words, existence of an edge (i, j) means that if node i belongs to
R, iteration j will not contribute to the final count.

3. Output the resulting bipartite graph (X ,Y, E).

Figure 6: Min-hash graph

1 2 3 4 5 6 7 8 9 10 11
h1 0.83 0.25 0.77 0.85 0.93 0.35 0.86 0.92 0.49 0.21 0.5
h2 0.62 0.83 0.27 0.59 0.63 0.26 0.4 0.26 0.72 0.36 0.6
h3 0.68 0.11 0.67 0.29 0.82 0.3 0.62 0.23 0.67 0.35 0.7
h4 0.02 0.43 0.22 0.58 0.69 0.67 0.93 0.56 0.11 0.42 0.8

Table 1: Example Hash Functions
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Example. Let the universe be U = [11]. Let A = {1, 2, 3, 4}, I = {2, 3},
x∗ = 11. Let the threshold range for the θ-good iterations be [0.2, 0.7]. Assume
that our protocol runs in 4 iterations using the hash functions defined in table 1.

Figure 6 shows the constructed min-hash graph. We have X = {5, 6, . . . , 10}
and Y = {h1, h2}; h3 has been ruled out since p3 = h3(2) = 0.11 ̸∈ [0.2, 0.7],
and h4 has been ruled out because minh4(A) ̸= minh4(I). Moreover, we have
p1 = h1(2) = 0.25 and p2 = h2(3) = 0.27. Note that (8, h2) ∈ E , because
h2(8) < p2.

5.8.2 Fixed Subsets (R′, T ) of Secret Items and Good Iterations

We fix H1 and thereby the nodes X and Y of the min-hash graph. In this section,
as the first step, we fix subsets R′ ⊂ X and T ⊆ Y and analyze the noise over
the choice of H2. In other words, we are treating H2 as private the adversary.
Extending this, in the next section, we will consider the actual protocol setting
where the hash functions are public and then analyze the noise over a distribution
of R′.
Edge distribution in the min-hash graph. The probability (over the choice
of H2) that an edge (i, j) forms is exactly equal to pj . Moreover, since we are in
the random oracle model, the probability that (i, j) forms is independent of the
probability that any other edge in the graph forms.
Noise distribution. We are interested in the probability ER′

T,r over the choice
of H2 that the final count is reduced by exactly r due to the elements of R′

over a bundle T of iterations. In the random oracle model, the probability
depends only on the size of the sets n′ = |R′| and kb = |T |. Therefore, we
will often use the notation En′

kb,r
= ER′

T,r. We will sometimes even omit kb and
write En′

r . Observe that En′
r is another way of representing an Additive Poisson

Binomial distribution. That is, En′
kb,r

= Pr[PB(kb, pJ ) = r]. Therefore, based on
Lemma 5.10, we have the following:

Corollary 5.11. Let kb ∈ Ω(κ), and consider any H1 that makes |Y| > kb in
the min-hash graph construction. For any s = O(lg lg κ), any constant ϵ, there
are a, b ∈ [kb] such that over the choice of H2, we have

• For any r ̸∈ [a+ s, b], then E
n′
R

kb,r
and E

n′
R

kb,r−s are both negligible in κ.

• For any r ∈ [a, b], then it holds e−ϵ/3 ≤ E
n′
R

kb,r
/E

n′
R

kb,r−s ≤ eϵ/3.

The above indicates that the distribution over r is amenable for use as a
noise distribution in a differential privacy context.

5.8.3 Noise Over the Choice of R′ with Public Hash Functions

Our main technical challenge is to show that the properties needed for differential
privacy hold even when the hash functions are public.

For this, we first fix H1 and H2. Then, we consider the derived min-hash
graph G = (X ,Y, E). Let D be the distribution of R′. For any set T of iterations
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of size kb and any integer r, let IR′,T,r be the indicator random variable that is
set to 1 if set R′ contributes −r to the total count in the min-hash protocol. We
define a random variable DT,r that is the probability that R′ contributes to the
noise reduction r over iterations in T :

DT,r(D) := Pr
R′∼D

[IR′,T,r] =
∑
R′

Pr
R′∼D

[R′] · IR′,T,r.

Conditions for the hash functions. Ideally, we would like to show the
following:

For any fixed H1 and H2 and over distribution D, it holds that DT,r and
DT,r−1 (and ultimately DT,r−s) are close, except with the tail case of r
whose probability weight is negligible.

The universal quantifier for H1 and H2 in the above can be slightly relaxed
so that the condition holds with all but small probability over the choice of the
hash functions, which can be captured by showing that DT,r is close to its mean
E

n′
R

k̂,r
(and then applying Corollary 5.11).

Geometric collision property. This is essentially to show that DT,r is
strongly concentrated around its mean. We could try to apply Chernoff bound
to show the concentration property, but we cannot do so because IR′

i,T,r and
IR′

j ,T,r are not necessarily independent if R′i ∩ R′j ̸= ∅. Therefore, we instead
use Chebyshev for bounding the tail, which requires DT,r to have small variance.
Thus, our next goal is to upperbound Var[DT,r]. To do so, we introduce a
property of distributions D over sets R′ which we call the “Geometric Collision
Property”. In a nutshell, this property states that the probability that two sets
R′1, R

′
2 drawn independently from D have intersection of size z is at most ( 1

n0.5 )
z

for all z ∈ [n′]. We show that Var[DT,r] can be bounded for any distribution
over sets R′ that has this property.

Definition 5.12 (Geometric Collision Property). Let D be a distribution over
sets R′ of size n′R. We say that D has the Geometric Collision Property if for
all z ∈ [n′R]

Pr
R′

i,R
′
j∼D

[
|R′i ∩R′j | = z

]
≤
(

1
√
nR

)z

.

Based on this property, we can show the following lemma.

Lemma 5.13. Let kb ∈ Ω(κ), and consider any H1 that makes |Y| > kb in
the min-hash graph construction. Let D be a distribution over sets of size n′R
with geometric collision property. For any set T of size kb ∈ Ω(κ), there exist
a, b ∈ [kb], such that with probability 1 − O(kb·lg3(κ)√

nR
) over choice of H2, the

following holds:

• For all r ̸∈ [a+ s, b], DT,r is negligible, where s = O(lg lg κ).

• For all r ∈ [a, b], e−ϵ/3En′
R

kb,r
≤ DT,r ≤ eϵ/3E

n′
R

kb,r
.
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The proof is found in Section 7.3.6.
Multiple bundles of iterations towards DDP with negligible δ. We
are not quite done yet. Using the above lemma, we are only able to reduce the
failure probability only to ∼ 1/

√
n, whereas we would like the failure probability

to be negligible. In order to do that, we split the “good” iterations into u
bundles, where u is a small superconstant number u = lg lg κ, and argue that
with overwhelming probability at least one bundle serves as a good noise. Note
that hash outputs are independent in each bundle and so the probability that
all u bundles fail should be ( 1√

n
)u, which is negligible. For this, we set the

parameter kb = kg/u, where kg is the number of good iterations.

5.8.4 Geometric Collision Property In the Face of Leakage

We conclude the proof by showing that R′ indeed has the geometric collision
property. It is not hard to see that the uniform distribution over all sets R′ of
size n′ from a universe of size n′ · ℓ (where ℓ ∈ Ω(n3)) satisfies the “Geometric
Collision Property”. It would seem, therefore, that we could take this as our
secret distribution and the analysis would be complete. Unfortunately, even for
the case in which the distribution is sets of size n′ chosen uniformly at random
from the universe, the analysis is not straightforward. The difficulty stems from
the fact that the “noise” in the protocol is tied to the input itself. Therefore, if
information about the input is leaked in any other part of the protocol, then
the noise distribution changes and may no longer satisfy the required properties.
Specifically in our case, learning the number of matches across the two parties’
sets with respect to some of the hash functions leaks information about the
secret set of the honest party (since the secret set affects those counts).
Strong chain-rule for min-entropy. We first observe that our initial min-
entropy in the distribution over secret sets R is high (approximately 8n

9 lg ℓ+2n)
and that the entire information leaked about R from the counts of the iterations
that are not θ-good is small. We can lower-bound the remaining min-entropy in
D, therefore, using the weak chain rule for min-entropy [58, Lemma 2.2].

If we want to use the weak chain rule to lower bound the remaining min-
entropy with all but 2−κ probability, however, we need to take a hit of κ in the
min-entropy. Recall that each individual element in R can be viewed as being
chosen from a set of size ℓ and thus has min-entropy of at most lg(ℓ)≪ κ. Thus,
after applying the weak chain rule and losing more than κ bits of min-entropy,
we can have certain elements that have only constant min-entropy, thus implying
that collisions are likely in those positions. So the weak chain rule, while leaking
only a small number of bits overall, can ruin the geometric collision property.
Even worse, the min-entropy definition doesn’t rule out the case in which all
elements of R (i.e. the marginal distributions over each element in R) have only
constant min-entropy, while the total min-entropy in R remains high!

This phenomenon has been previously observed and studied in the litera-
ture [164]. One way to deal with such a counter-intuitive situation is to actually
leak a small amount of additional information, known as “spoiled” bits. This will
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lower the total min-entropy in R, but will ensure that a large fraction of blocks
in R still have high min entropy of at least 1.5 lg(n). We extend the techniques
of [164] to produce spoiling leakage so that the min-entropy in R still stays high
in our protocol. We discuss more details about the strong chain rule in the next
section.

5.8.5 Strong Chain Rule

Our strong chain rule considers min-entropy where leakage functions
ℓ1(·), . . . , ℓn(·) are additionally considered. We describe our theorem in a gen-
eral way, and we hope that it may find future applications in leakage-resilient
cryptography.
Sequence of random variables. Recall that R is the set of secret items
in the min-hash protocol. Here, we treat R as a sequence of block-by-block
random variables R = (R1, . . . , Rn), associated with (potentially randomized)
leakage functions ℓ1(·), . . . , ℓn(·) with randomness ρ1, . . . , ρn. You can think of
the blocks as coming in a streaming fashion in order of R1, R2, . . . , Rn.
Leakage functions. Loosely speaking, the properties we require of the leakage
functions are that the i-th leakage ℓi can be computed given (Ri, ρi), and all
the outputs of (ℓi+1, ℓi+2, . . . , ℓn). We also require that the total number of
valid sequences of leakages from ℓ1(·), . . . , ℓn(·) should be sufficiently small (see
Property 1 in Theorem 5.14 below).
Spoiling functions. Our theorem below states the existence of a spoiling
function f(·) with certain properties, as well as properties of the random variables
(R1, . . . , Rn) and (ρ1, . . . , ρn) conditioned on the output of the spoiling function
f(R).

The properties of (R1, . . . , Rn) and (ρ1, . . . , ρn) are roughly the following:
(1) There exist disjoint sets V,W such that V ∪W = [n] that are determined
by f(R). (2) Blocks {Ri}i∈V have high min-entropy conditioned on f(R). (3)
Blocks {Ri}i∈W have small support size (low max-entropy) conditioned on f(R).
(4) For i ∈ V , the random strings ρi are uniform random and independent
conditioned on f(R). (See Properties (5)-(8) in Theorem 5.14).

The properties of f(·) are roughly the following: (1) The failure probability
(outputting ⊥) is small. (2) As long as the total number of valid sequences of
leakages from ℓ1(·), . . . , ℓn(·) is sufficiently small, the image size of f is small.
This property ensures that we do not lose too much of the total min-entropy of
R by releasing f(R) (3) The leakages {ℓi(·)}i∈W can be computed given f(R).
(See Properties (2)-(4) in Theorem 5.14)
Our theorem. The main difference between our spoiling lemma and prior ones
is that our min and max entropy guarantees on R = (R1, . . . , Rn) | f(R) hold
even with respect to additional leakage {ℓi}i∈W which is included in the spoiled
bits f(R).

Theorem 5.14 (Block structures with few bits spoiled and leakage). Let U =
U1×· · ·×Un be a fixed universe and R = (R1, . . . , Rn) be a sequence of (possibly
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correlated) random variables where each Ri is over Ui (and all are disjoint) and
|Ui| = ℓ for all i. Let ρ1, . . . , ρn be a sequence of uniformly random strings over
{0, 1}m and let ℓ1(·), . . . , ℓn(·) be leakage functions. Then, for any ϵ ∈ (0, 1), any
δ > 0 and any c ∈ [2δ, ℓ/2δ], there exists a spoiling leakage function f(R) that
satisfies the following properties.

1. A sequence β1, . . . , βn is valid if for all i ∈ V , βi = ⊥ and for all i ∈ W ,
βi = ℓi(Ri, ρi, β>i), where β>i = (βi+1, . . . , βn). We require that the
number of valid sequences β1, . . . , βn is at most B.

2. It holds that PrR[f(R) = ⊥] ≤ ϵn.

3. |Im(f)| ≤ B · (2(lg(ℓ) + lg(1/ϵ))/δ)
n.

4. Conditioned on any y ∈ Im(f) \ {⊥}, for all i ∈ W , the leakage
ℓi(Ri, ρi, β>i) can be computed from y. Here, βj = ⊥ if j ∈ V and
βj = ℓj(Rj , ρj , β>j) otherwise.

5. Let Im(f) be the set of images of f . Every y ∈ Im(f) \ {⊥} specifies two
disjoint sets V and W such that V ∪W = [n].

6. Conditioned on any y ∈ Im(f) \ {⊥}, for every i ∈ V , every element in
distribution Ri | R<i has low probability weight, i.e.,

∀y ∈ Im(f) \ {⊥},∀r s.t. f(r) = y,∀i ∈ V : Pr

[
Ri = ri

∣∣∣∣∣ R<i = r<i, y

]
≤ 2δ

c
.

7. Conditioned on any y ∈ Im(f) \ {⊥}, for every i ∈ W , it holds that
Ri | R<i has small support size, i.e.,

∀y ∈ Im(f) \ {⊥},∀r s.t. f(r) = y,∀i ∈W :

|{ri : Pr[Ri = ri|R<i = r<i, y]] ≥ 0}| ≤ 2δ · c.

8. {ρi}i∈V are distributed independently and uniformly at random conditioned
on f(R).

The proof is found in Section 7.3.7. Typically, one would like to set c as large
as possible, while ensuring that the size of V remains above some threshold. The
achievable tradeoffs between c and |V | are determined by the min-entropy of
R before the spoiling bits f(R) are released. For our applications, we require
c = n1.5 and |V | ≥ n/3. In Section 7.3.8, We show that our min-entropy
assumption on R implies that this parameter setting is achievable.

5.9 Empirical Evaluation
5.9.1 Comparison With Prior Work

We compare our noisy min-hash (NMH) protocol πNMH with the current state-
of-the-art approach, called sketch-flip-merge (SFM) [101] and the generalized
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randomized response mechanism (GRR) [10]. In particular, we evaluate the
trade-off between communication cost and cardinality estimation accuracy, while
achieving (almost) the same level of privacy guarantee as follows:

• For a given privacy parameter ϵ (with δ fixed to 2−40), we choose the right
amount of noise for our protocol and vary the number of hash functions k
to measure the communication cost and estimation accuracy trade-off.

• We then compare these accuracy results with the state-of-the-art protocols
using the same communication and privacy parameter.
We use the relative root mean squared error (RRMSE) of the union size as
our accuracy metric. This choice is primarily to ensure a fair comparison
between our protocol and the SFM protocol. Further details on this matter
are provided in the discussion of the SFM protocol below.
In Figure 7, we demonstrate the comparison of NMH, SFM, and GRR.

Our protocol. We calculate the communication of our protocol πNMH with
Fpsi-ca instantiated with the PSI-CA protocol described in Figure 23. It is a
variant of the protocol in [53], where H2 is applied to {a′i}i∈[v] and {b′j}j∈[w] in
order to reduce the communication. The original protocol is secure under the
DDH assumption in the random oracle model. Essentially the same security
proof found in the original paper can be applied to show the security of this
variant, when H2 is also modeled as a random oracle.

Protocol 23 Private Set Intersection Cardinality
Let G be a multiplicative group of order q. Let H1 : {0, 1}∗ → G and H2 :
{0, 1}∗ → {0, 1}λ be hash functions.
Input: P1 has C = {c1, . . . , cv} and P2 has S = {s1, . . . , sw}.

1. P1 samples a random exponent Rc ← Zq. For i ∈ [v], P1 computes
ai = H1(ci)

Rc . P1 sends (a1, . . . , av).

2. P2 samples Rs ← Zq and computes (a′1, a′2, . . . , a′v) = shuffle(aRs
1 , . . . , aRs

v ).
P2 also computes (b1, b2, . . . , bw) = shuffle(H1(s1)

Rs , . . . ,H1(sw)
Rs). P2

sends (H2(a
′
1), . . . ,H2(a

′
w)) and (b1, . . . , bw) to P1.

3. P1 computes (b′1, . . . , b
′
w) = (bRc

1 , . . . , bRc
w ). P1 outputs the following value:

| {H2(a
′
1), . . . ,H2(a

′
v)} ∩ {H2(b

′
1), . . . ,H2(b

′
w)}|.

We briefly sketch the security proof here while referring the full proof to the
original paper [53]. We first show the simulator for the corrupted P1. Let t be the
protocol output (i.e., set intersection cardinality). The simulator chooses random
t indices (i1, . . . , it) (resp., (j1, . . . , jt)) from [v] (resp., [w]). In order to prepare
(b1, . . . , bw), the simulator replaces H1(sjk)

Rs (for k ∈ [t]) with H1(cik)
Rs , and

the remaining values H1(sh)
Rs are simulated with random numbers. Since H1
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is a random oracle (i.e., for an input x, we have H1(x) = gr for a random r),
this simulation is indistinguishable under the DDH assumption. When P2 is
corrupted, the first message {ai = H1(ci)

Rc : i ∈ [v]} is simulated by random
values. The simulation is also indistinguishable under the DDH assumption.
The above PSI-CA protocol exchanges v + w elliptic curve points and w hashes,
resulting in (v + w) · 256 + w · 80 bits. In protocol πNMH, the parties will run
this PSI-CA protocol by setting v = w = k + 2ℓB .
Sketch-Flip-Merge (SFM) [101]. While our main focus is on comparing the
accuracy of Jaccard Index estimation, in the absence of available code, we had
to rely on their analysis of the relative root mean squared error (RRMSE) of
cardinality estimation instead of Jaccard Index estimation. This poses challenges
in evaluating the accuracy of the Jaccard Index for SFM. In particular, although
the Jaccard Index can be estimated by calculating the ratio of estimated in-
tersection size over the estimated union size, its RRMSE cannot be directly
calculated from RRMSEs for the intersection and union sizes. This is because
the two estimates have dependency, and we can only conjecture that the derived
estimate through the division operation will probably have a worse RRMSE.

In the end, giving a slight advantage to SFM, we decided to focus on the
accuracy of cardinality estimation of the size of the union only. In our case, the
union size was estimated based on the Jaccard Index from the min-hash protocol
and nA and nB. Following the approach of SFM [101], we perform m = 1000
estimates to measure the accuracy in the form of relative root mean squared
error (RRMSE); that is, letting n̂U,1, . . . , n̂U,m be the union size estimates,
and nU be the real union size, we define RRMSE(n̂U,1, . . . , n̂U,m;nU ) to be
1
nU

√
1
m

∑m
i=1(n̂U,i − nU )2. To match the communication complexity, we set the

sketch of SFM to be a (B × P )-bit matrix such that B · P = 592w and P = 24.
Generalized Randomized Response (GRR) [10]. We also compare our
protocol with the generalized randomized response MinHash protocol in [10].
Following their guidance in experiments, we select the range of their hash function
to be a single bit and let their protocol use 592w hash functions to match our
communication cost.

Since their actual protocol would take too long to run for large n and k, in
order to facilitate the large number of hash functions, we wrote code simulating
the error based on their privacy and utility analysis. As with the other protocols,
we perform 1000 estimates to lower the variance of the errors. To align with our
other comparison with SFM, we report the relative root mean squared error of
the union size.
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Figure 7: Accuracy: NMH, SFM,
GRR. Figure 8: DDP based on k, and JI

Comparison Results. In Figure 7, we demonstrate the comparison of NMH,
SFM, and GRR. We set n = 106. The result shows that our error is consistently
smaller than both SFM and GRR for a reasonable range of communication
costs, which corresponds to the usage of k ∈ [100, 500] hashes for our noisy
min-hash protocol. Specifically, as we increase the number of hash functions,
both our protocol and SFM achieve increased accuracy, due to larger sketch sizes
that better represent the input sets. On the other hand, while GRR performs
well with smaller communication, adding more communication becomes counter
productive. This is because each additional bit in their protocol corresponds
to an extra hash function output, which increases the noise needed to achieve
the same privacy guarantee. Finally, both GRR and our protocol exhibit spikes
in the accuracy trends, corresponding to crossover points where a significant
amount of additional noise is required to keep δ from getting above 2−40.

In concluding remarks, it is noteworthy that both SFM and GRR protocol
discloses the entire noisy sketch, revealing collective information about the party’s
input set. We note that differential privacy does not prohibit revealing collective
information about the inputs; rather, it mandates that individual contributions
should not be discernible in the output. In contrast, our min-hash protocol
employs secure two-party computation and discloses no information about the
input set, except for the final (lg k)-bit output. When deciding which scheme to
use, depending on the specific use case, this observation may need to be taken
into account.

5.9.2 DDP of Noiseless Protocol

We empirically evaluate the DDP guarantee for the noiseless min-hash protocol
in the public hash setting, in which each element in the secret set has high
entropy. As before we set nA = nB = 106. Figure 8 shows how the privacy
parameter ϵ changes with the number k of iterations. Although we demonstrate
the results for JI ≤ 0.5, the results for JI > 0.5 are similar. We omit the data
points where ϵ is greater than 5, which happens when k is small, and focus on
the more meaningful ϵ range. We observe the following:

• Roughly speaking, when the number k of iterations of the min-hash protocol
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is reasonably large (at least 500), the noiseless min-hash protocol provides
a decent level of DDP with privacy parameter ϵ ∈ [0.5, 5].

• Higher values of k correspond to improved privacy parameters. Note that
as k grows, more iterations will be θ-good. Since hashes of non-intersecting
items work as noise in θ-good iterations, more θ-good iterations will
essentially amount to adding more noise, therefore offering better privacy
guarantee.

• When k is the same, the best privacy parameter is achieved when JI is
around 0.5. This is due to the likelihood that a hash function is θ-good
being maximized when striking a balance between the two conditions
stipulated in Definition 5.7: (i) the hash of an intersecting item should be
the minimum hash value, and (ii) the minimum hash value is neither too
large nor too small.

6 FACTS

6.1 Introduction
The proliferation of fake and misleading information online has had significant
impact on political discourse [106] and has resulted in violence [158]. Large
services like Facebook and YouTube have begun to remove or label content that
they know to be fraudulent or misleading [73, 188], through a combination of
a manual process of reviewing posts/videos and automated machine learning
techniques.

However, on end-to-end encrypted messaging services (EEMS), like Signal,
WhatsApp, Telegram, etc., where so-called “fake news” is also shared, such review
is impossible. At no point do the providers see the plain-text, unencrypted
contents of messages transmitted through their systems and thus cannot identify
and remove offending material. Such platforms must instead rely on their users
to identify and report malicious content. Even then, identifying and removing
users who repeatedly post misleading and dangerous content may still be difficult
because some platforms, like Signal, also hide the path the message took, so
identifying and addressing the original source of the misinformation may not be
possible.

Tyagi et al. [177] introduced a first approach for overcoming this challenge and
allow EEMS to effectively traceback an offending message to find the originator
based on a user complaint. The traceback procedure also assures that all
other messages remain private and that innocent parties cannot be blamed for
originating the offending messages.

While innovative, there are two notable shortcomings of Tyagi et al.’s trace-
back scheme. First, it requires extensive “housekeeping” on the part of the
platform that scales as the number of messages in the system. Second, a single,
possibly malicious, complaint can trigger a traceback and thus reveal the message
contents as well as the history of prior recipients, which is counter to the goals
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of EEMS to maintain the privacy of users communicating through this system.
One malicious user (e.g., a government agent) can reveal the source of a piece of
information (e.g., a leak) that they have received, violating the privacy of the
sender (e.g., the leaker) by issuing a single complaint to the EEMS. While it may
be possible to apply manual review to these complaints, the scale of possible
complaints could make this impractical. Several follow-on papers [110,151] show
how to achieve source-tracking for EEMS to identify the source of a message
without relying on traceback of all intermediate recipients. However, these
systems still allow a single complainer to trigger the source-tracking.

In this paper, we aim to resolve this conflict between privacy and ability to
identify misinformation in EEMSs by first observing that “fake news” messages
are, by definition, viral and are thus received, and likely complained about, by a
large number of users. Private messages, such as leaks, on the other hand, are
likely to be targeted and are thus only received by a small number of users; indeed,
any message received by only a few users is inherently less impactful overall
and more likely deserving of privacy protections. This leads to a more nuanced
approach for identifying fake news: apply a threshold approach to complaint
management, whereby only viral fake news would overcome the threshold and
trigger an audit.

Counting the number of complaints in a private manner is a non-trivial
problem if the privacy of the EEMS’ clients is to be maintained prior to the
threshold being reached, even given available cryptographic solutions. For
example, a homomorphic encryption solution (e.g., [120]) would enable the
checking and updating of counts for each message, but the access patterns of
clients checking and updating counters could reveal how many complaints a
message receives even if the threshold is not reached. Oblivious RAM (ORAM)
(e.g. [90, 170]) could be used to protect the access patterns, but have high
computational overheads and usually assume clients may share secrets and are
not malicious. Pricate Information Retrieval (PIR) does not assume clients are
trusted, but has different scalability challenges and does not address the problem
of obliviously updating without revealing which message is being complained
about.

We propose a different approach we call a Fuzzy Anonymous Complaint Tally
System (FACTS). FACTS maintains an (approximate) counter of complaints
for each message, while also ensuring that, until a threshold is exceeded, the
status of these counters is kept private from the server and all users who have
not received the message. FACTS builds on top of any end-to-end encrypted
messaging platform, incurring only small overhead for message origination and
forwarding. In particular, FACTS maintains the communication pattern of
the underlying messaging system, requiring no new communication or secrets
between users even for issuing complaints.

To avoid the high overheads of existing solutions, FACTS uses a novel
oblivious data structure we call a collaborative counting Bloom filter (CCBF).
This data structure allows us to obliviously increment and query approximate
counters on millions of messages while only requiring 12MB of storage. Moreover,
incrementing a counter only requires flipping one bit on the server and only
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uses the minimal communication of log |T | bits to address a single bit in the
server-stored bit vector T . While the resulting counters are only approximate, we
show experimentally and analytically that we are able to enforce the threshold
on complaints with good accuracy, namely, below 10% error in theory, and below
3% in most realistic deployment scenarios.

The contributions of this paper are as follows:

• We develop a collaborative counting Bloom filter, a new oblivious data
structure for counting occurrences of a large number of distinct items.

• We use this data structure to instantiate a provably-secure system, FACTS,
for privacy-preserving source identification of fake news in EEMSs.

• Finally, we perform experiments to show the accuracy and overhead of
FACTS in realistic deployment scenarios.

6.1.1 Setting and Goals

FACTS is built on top of an end-to-end encrypted messaging system (EEMS).
For this work, we focus on the setting of server-based EEMSs with a server S
that enables (authenticated) encrypted communication between the system users.
Examples of such EEMSs include Signal and WhatsApp, among many others.

To make sure that FACTS is compatible with existing encrypted messaging
systems, we make the following performance requirements:

1. Messaging costs: Originating and forwarding messages should incur little
computational overhead for both users and the server over the standard
procedure in the encrypted messaging system,

2. Server storage: The storage overhead of the server should be small (i.e.,
a single table not exceeding a few MBs),

3. User costs and requirements: Issuing complaints requires a small
amount of communication and computation from the complaining user,
and no cost to other users. Moreover, complaints can not require direct
communication between users or require the users to have any apriori
shared secrets that are not known to the server.

4. Complaint throughput: Issuing complaints may be slower than standard
forwarding of messages, but the system must be able to handle millions of
complaints per day.

To ensure privacy of messages and complaints, FACTS requires that com-
plaints remain hidden from the server (and colluding clients) until a threshold
of complaints is reached. Additionally, FACTS ensures integrity of the com-
plaint process ensuring correctness of complaint counts and the identity of the
revealed originator once the threshold is reached. Specifically, FACTS satisfies
the following security guarantees:
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1. Message privacy: All messages remain end-to-end encrypted and private
from the server and non-receiving clients until a threshold of complaints
is reached and an audit is issued. Moreover, even after the audit, only
information about the audited message is revealed.

2. Originator integrity: Once a threshold of complaints is reached on a
message, FACTS will only identify information about the true originator
of the message. In particular, no innocent party can be framed as the
originator.

3. Complaint privacy: The server and any colluding clients who have not
received a message x should have no information about the number of
complaints on x. In particular, the server should not be able to tell what
message is being complained about.

4. Complaint integrity: A set of malicious clients should not be able to
alter the number of complaints on any message x. Specifically, they cannot
block or delay complaints, and cannot (significantly) increase the number
of complaints on a message x except through the legitimate complaint
process.

6.1.2 Building FACTS

Recall that our goal is to enable privacy-preserving counters to tally complaints
on each message m. This suggests an immediate solution where the server stores
an encrypted counter for each message, and clients interact with the server
to increment the counter and check the threshold. While implementing such
counters is certainly possible using homomorphic encryption [85] or standard
secure computation techniques [21,88,186] , the problem is that the access pattern
of clients’ updates to counters leaks information to the server by revealing
the complaint histogram. This suggests a further modification to store the
counters inside an oblivious RAM (ORAM) [90] to hide such access patterns
from the client. However, in our setting this would require a multi-client
ORAM [38, 102, 131] which incurs significant performance penalties including
at least O(log n) communication overhead when there are n distinct messages.
Moreover, this would require direct communication between clients to maintain
their ORAM state, and additionally, no security against malicious clients.

In FACTS, we take a different approach. Instead of relying on encryption
to hide the counters from the server, we hide the counters in plain sight by
mixing together the counters for all the messages in a way oblivious to the server.
To make this possible, we relax the functionality of FACTS to only enforce
approximate, rather than exact, thresholds. That is, the threshold will be
triggered on a message x after (1±ϵ)t complaints for a small error ϵ. Making this
relaxation allows us to use a sketch-based approach for counting the complaints.

To achieve this functionality obliviously, we develop a collaborative counting
Bloom filter (CCBD). This data structure consists (roughly) of a collection of
Bloom filters, one for each message, where the Bloom filters corresponding to
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different messages are mixed together to hide them from the server. Specifically,
the server stores a table of s bits. A random subset of v bits (Vx) is assigned to
each message x at origination; these bits will be used for tracking complaints
about this message (for intuition, one can think of these bits as forming a Bloom
filter for storing the set of complaints about the message). We stress that the
server has no information about which bits correspond to which messages.

To complain about a message x, a user who has received x can find the
corresponding bit locations, and will (attempt to) flip one of the bits from 0 to 1.
However, allowing users to flip any bit they choose, would allow malicious users
to significantly accelerate complaints for a message they wish to disclose. To
prevent this behavior, we restrict each client to only be able to flip (i.e., complain
on) a small (of size u) set of locations UC . Thus, to complain about a message
m, a client first identifies the set Vx of bits corresponding to x. Then, she checks
how many of these bits have already been set to 1, and if this exceeds a specified
threshold, notifies the server to trigger an audit. If the threshold for x is not
yet exceeded, the client sees whether any of the 0 bits in Vx are in her set UC ,
and if there are any such bits, she flips one of them (chosen at random) from 0
to 1. Otherwise, the user still flips a random bit in their set Ux, so the server
cannot discern anything about the message being complained on. We prove in
Section 6.4 that the actual number of complaints necessary to trigger an audit
can be calculated with high precision allowing us to (approximately) enforce the
desired threshold.

6.1.3 Limitations of FACTS

In order to present FACTS, it is also important to recognize what our system
does not do.

First, unlike some prior work, e.g. [84], [125], FACTS does not attempt to
automatically detect misinformation. Instead, it relies on users reporting it when
they see it. This reliance on users has inherent benefits and limitations. While
our system is not subject to the kinds of machine-generated false positives that
can arise from, e.g., hash collisions [31], our model is inherently vulnerable to
any sufficiently large group of dishonest users, who could trigger an audit on
a benign message. This is why we suggest the possibility of a manual human
review process on message contents before the service provider would take any
action on an audited message; see Section 6.8.

Second, due to the approximate nature of FACTS, it works most effectively
for relatively large thresholds, say in the hundreds and above. For our application
to fake news detection, this is reasonable as such messages are likely to garner
a large number of complaints, and indeed this was our main motivation for
this paper. We leave as interesting possible future work to implement a system
supporting smaller thresholds, even as small as 2, efficiently.

One additional functionality limitation is that, as is true with any application
using Bloom filters, the CCBF data structure can fill up once too many complaints
have been registered. To deal with this issue it is necessary to periodically reset
the counters and refresh the CCBF data structure. We refer to each such refresh
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period as an epoch, and in the remainder of the paper only present algorithms
for a single epoch.

Finally, on the security side, an important limitation is that FACTS reveals
meta-data on who issues complaints (but not what message they complain on).
It is important to consider what is revealed by this meta-data. By observing
the timing of messages and complaints, the server can make some inferences
about what messages users are sending and complaining about. For example,
suppose that the server sees that A sends a message to B, and then B issues a
complaint. Then, it may be reasonable for the server to assume that A has sent
the message which B complained about, even though this is not directly leaked
by our system. Nonetheless, our definition guarantees that the server cannot
be certain that this is indeed the case. We note that the messaging meta-data
is already a byproduct of the underlying EEMS platform. FACTS only adds
complaint meta-data to this leakage; see Section 6.8 for some further discussion.

6.1.4 Paper Layout

The remainder of the paper is organized as follows. In Section 6.2, we introduce
some of the notation we use throughout the paper. Then, in Section 6.3 we
describe the syntax and functionality of FACTS. In Section 6.4 we present and
analyze our main building block, the CCBF data structure. Then, in Section 6.5,
we show how to use a CCBF to instantiate FACTS. We demonstrate the accuracy
and performance through experimental evaluation in Section 6.6 and then prove
the security of FACTS in Section 6.7. Finally, we describe some variants of
FACTS and directions for future work in Section 6.8 and present related work
in Section 6.9.

6.2 Preliminaries
We use [n] to denote the set 1, . . . , n. We write x← X to indicate that the value
x is sampled uniformly at random from the set X. We use κ to denote a statistical
security parameter and κ to denote a computational security parameter. We also
assume the existence of a hash function H : {0, 1}∗ → {0, 1}∗ which is modeled
as a random oracle. We let poly(·) denote a polynomial function and negl(·)
denote a negligible function.

6.3 Fuzzy Anonymous Complaint Tally System (FACTS)
In this section, we present the syntax for FACTS and describe how FACTS is
used. We show how to instantiate FACTS in Section 6.5.
Assumptions: We assume that each user A has a unique identifier IDA, and
that the server can authenticate these IDs. (We will abuse notation to use A to
represent the user and also the id IDA). We also assume that the server has an
identifier IDS (we will denote this by S) that can be authenticated by all users.

Additionally, we assume that the underlying end-to-end encrypted messaging
system (EEMS) offers methods send(A,B, x) and receive(A,B, x) for sending
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and verifying a message x sent from user A to user B. Moreover, we assume
that this communication is encrypted and authenticated. In particular, receive
verifies that the received message was sent by A and was not modified in transit.
Importantly, we do not assume that this platform is anonymous, instead assuming
that the full messaging history i.e., who sent a message to whom and the size of
that message, is available to the server.
Syntax: FACTS is a tuple of protocols FACTS =
(Setup, SendMsg,RcvMsg,Complain,Audit). The first is used to set up
FACTS, the next two are used to send and verify messages, while the last two
methods are used to issue complaints and audit received messages.

• Setup(c): This takes as input an upper bound on the total number of users
and initiates the FACTS scheme for c users.

• SendMsg(A,B, tagx, x): This method is used by a user A to send a message
x to another user B. This may be a new message originated by A (indicated
by tagx =⊥) or a forward of a previously received message.

• RcvMsg(A,B, tagx, x): This algorithm is run by B upon receiving a message
(tagx, x) from A.

This algorithm checks whether tagx is indeed a valid tag generated by A
on message x. If this is the case, then B accepts the message, otherwise
he rejects the message.

• Complain(C, tagx, x): This protocol is run by a user C to complain about
a received message (tagx, x).

• Audit(C, tagx, x): This protocol issues an audit of a message x revealing
(tagx, x) to S. This will be called by C when the number of complaints on
m exceeds a pre-defined threshold (with high probability).

Usage: The following workflow demonstrates the standard usage of FACTS. To
originate a new message x, a user A runs the SendMsg protocol with the server
S to create metadata tagx. SendMsg then sends this metadata and the message
(tagx, x) to the receiving user B using the messaging platforms send method.
Upon receiving a message (tagx, x), B first locally runs RcvMsg(A,B, tagx, x)
to verify that the received message and tag are valid, if this fails he ignores the
message. To forward a received message (tagx, x), a user A runs SendMsg with
the server S to produce metadata tag′x; A then discards this metadata, and the
original message (tagx, x) is sent instead using the messaging platform’s send
method.11

If a user B receives a message (tagx, x) that it considers “fake”, he can use
the Complain protocol to issue a new complaint on this message. After issuing a
complaint, B checks whether the threshold of complaints on x has been reached.

11We note that since the underlying messaging scheme is encrypted, the actual ciphertext
sent will not be the same as the ciphertext received.
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If so, he calls Audit to trigger an audit on the message (tagx, x), revealing x and
the originator of x to the server S.

We note that users may join and leave during the execution of FACTS as
long as the total number of identifiable users does not exceed c.

6.4 Collaborative counting Bloom filter
Our system records complaints in a special data structure which we call a
collaborative counting Bloom filter, or CCBF. This data structure shares some of
the same basic functionality as a counting Bloom filter [75, 139] or count-min
sketch [50], which is to insert elements and compute the (approximate) frequency
of a given element.

Our CCBF differs from a usual count-min sketch in that each update operation
is accompanied by a user id, and each user can only perform a single update for
a given element. This can be thought of as a strict generalization of the normal
count-min sketch operations, where the latter may be simulated by our CCBF
by choosing a unique user id for each update.

The actual data structure for the CCBF is also far simpler than the 2D array
of integers used for a count-min sketch; instead, we store only a single length-s
bit vector T . As a result, our CCBF will have the following desirable properties:

• The bit-length of T scales linearly with the total number of insertions.

• Each witness operation (insertion) changes exactly one bit in the underlying
bit vector from 0 to 1.

• The CCBF is item-oblivious, meaning that after observing an interactive
update protocol, the adversary learns which user id made the update, but
not which item was updated.

The downside to our CCBF is a far lower accuracy of the count operation in
general compared to count-min sketches. However, we will show that, for careful
parameter choices, the count operation is highly accurate within a certain range,
which is precisely what is needed for the current application.

6.4.1 CCBF Construction

The CCBF consists of a single size-s bit vector T and two operations:

• Increment(x,C): Increases the count by 1 for item x according to user id
C.

• TestCount(x, t): Returns true if the number of increments performed so
far for item x is probably greater than or equal to t.

Note that TestCount is probabilistic, in the sense that it may return false
when the actual count is greater than t, or true when the actual count is less
than t. Our construction guarantees the correctness probability is always at
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least 1
2 , and our tail bounds below show the correctness probability quickly goes

towards 1 when the actual count is much smaller or larger than t.
The performance and accuracy of the CCBF is governed by three integer

parameters s, u, and v, with u, v ≤ s, which must be set at construction time.
The first, s, is the fixed size of the table T . Each user i is randomly assigned
a static set of exactly u locations in the T ; i.e., a uniformly random subset of
{0, 1, 2, . . . , s− 1}, which we call the user set. Similarly, each possible item x is
assigned a random set of exactly v bit vector locations, which we call the item
set.

The two CCBF operations can be implemented by a single server and any
number of clients. The protocols are simple and straightforward, save for the
calculation of the tipping point τ which we present in the next subsection.

In these protocols, the size-s bit vector T is considered public or world-
readable; it is known by all parties at all times. In reality, the server who actually
stores T may send it to the client periodically, or whenever a client initiates a
Increment or TestCount protocol. However, the bit vector T is only writable by
the server.

The Increment(x,C) protocol, outlined in Algorithm 24, involves the User
attempting to set a single bit from 0 to 1 within the item set for x. However, the
user is only allowed to write locations within their own user set. So, if there are
no 0 bits in the intersection of these two index sets, the user instead changes any
other arbitrary 0 bit in its own user set in order to maintain item obliviousness.

Algorithm 24 Increment(x,C)

1. User and server separately compute the list of u user locations for user C,
UC ⊆ {0, . . . , s− 1}.

2. User computes list of v item locations for item x, Vx ⊆ {0, . . . , s− 1}

3. User checks each location in UC in the table T to compute a list SC =
{i ∈ UC | T [i] = 0} of settable locations for user C

4. If SC = ∅, then the user cannot proceed and calls abort.

5. Else if SC ∩ Vx ≠ ∅, user picks a uniformly random index i← SC ∩ Vx and
sends index i to server.

6. Else user picks a random index i← SC and sends index i to server.

7. Server checks that received index i is in the user set UC and that T [i] = 0,
then sets T [i] to 1.

Since the bit vector T is considered world-readable, the only communication
here is the single index i from client to server over an authenticated channel. In
reality, to avoid race conditions, the server will actually send the table entry
values T [i] for all i ∈ UC to the user first and lock the state of the global bit
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vector T until receiving the single index response back from the user.
The TestCount(x, t) protocol is not interactive as it only requires reading the

entries of T . The precise computation of the tipping point τ is detailed in the next
section. Note that this computation depends only on the total number of bits set
in the bit vector T as well as the parameters s, u, v; therefore the computation
of τ is independent of the item x and could for example be performed once by
the server and saved without violating item obliviousness.

This protocol is detailed in Algorithm 25.

Algorithm 25 TestCount(x, t)

1. Use parameters s, u, v and current value of m total number of bits set in
T , to compute the tipping point τ .

2. Compute list of v item locations for item x, Vx ⊆ {0, . . . , s− 1}

3. Check how many bits of T are set for indices in Vx. Return true if and
only if this count is greater than or equal to τ .

6.4.2 Calculating the tipping point

The key to correctness of the TestCount protocol is a calculation of the tipping
point τ , which is the expected number of 1 bits within any item set, if that item
has been incremented t times. We now derive an algorithm to compute this
expected value exactly, in O(tv) time and O(v) space.

Let s be the total size of the table T and m ≤ s be the total number of calls
to Increment so far. That is, m equals the number of 1 bits in T . Recall that
u, v ≤ s are the number of table entries per user and per item, respectively.

We first derive the probability that two subsets of the s slots have given-size
intersection. Next we derive a recursive formula for τ using these intersection
probabilities. The nearest integer to τ can then be efficiently computed using a
simple dynamic programming strategy.
Intersection probabilities

For the remainder, we use Knuth’s notation nk to denote the falling factorial,
defined by

nk =
n!

(n− k)!
= n · (n− 1) · (n− 2) · · · (n− k + 1).

Lemma 6.1. Let k, a, b, s be non-negative integers with k ≤ b ≤ a ≤ s, and
suppose S and T are two subsets of a size-s set with |S| = a and |T | = b, each
chosen independently and uniformly over all subsets with those sizes. Then

Pr(|S ∩ T | = k) =
ak · bk · (s− a)

b−k

sb · k!
. (3)
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Proof. The number of ways to choose S and T with a size-k intersection, divided
by the total number of ways to choose two size-a and size-b sets, equals(

s
k

)
·
(
s−k
a−k
)
·
(
s−a
b−k
)(

s
a

)
·
(
s
b

) .

This simplifies to (3).

Because the numerator and denominator are each products of b+ k single-
precision integers, the value of (3) can be computed in O(b) time to full accuracy
in machine floating-point precision.

Furthermore, equation (3) has the convenient property that, after altering any
value a, b, or k by ±1, we can update the probability with only O(1) additional
computation. So, for example, one can compute the probabilities for every k ≤ b
in the same total time O(b).
Recurrence for number of unfilled message slots

Fix an arbitrary item x, and let w ≤ v denote the number of 0 bits of T
within x’s item set. Let k ≤ m denote the number of Increment operations
performed on item x performed so far.

First, for convenience define pw to be the probability that an arbitrary user
is able to write to one of the w remaining unfilled slots for the message. From
Lemma 6.1, we have

pw = 1− (s− u)
w

sw
, (4)

which can be computed in O(w) time. In fact, we pre-compute all possible values
of pw with 0 ≤ w ≤ v in O(v) total time.

Now consider the random variable for the number of 0 bits within x’s item set
after k Increment’s on x, if the item set originally had w 0 bits. Define Rw,k to be
the expected value of this random variable, which can be calculated recursively
as follows.

If w = 0, then the slots are all filled, and if k = 0 then there are no more
Increment’s, so the number of unfilled slots remains at w. Otherwise, the first
Increment will fill an additional slot with probability pw, leaving w− 1 remaining
unfilled slots, and otherwise will leave w remaining unfilled slots. This implies
the following recurrence relation:

Rw,k =


0, w = 0

w, k = 0

pwRw−1,k−1 + (1− pw)Rw,k−1, w, k ≥ 1

All values of Rw,t with 0 ≤ w ≤ v can be computed in O(tv) time and O(v)
space, using a straightforward dynamic programming strategy.
Computing the tipping point

We now show how to compute the tipping point value τ , which is the expected
number of filled item slots after t Increments on that item, by summing the Rw,t
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values over all possible values of w based on the number of other calls to Increment
m.

To this end, define qw to be the probability that w ≤ v slots for a given item
are unfilled after m total calls to Increment for other items. Because other calls
to Increment are for other unrelated items, each one goes to a uniformly-random
unfilled slot over the entire size-s table T . Therefore qw is the same as the
probability of a size-m set and a size-v set having intersection size exactly v−w.
From Lemma 6.1, this is

qw =
mv−w · vv−w · (s−m)

w

sv · (v − w)!
.

We can pre-compute all values of qw for 0 ≤ w ≤ v in total time O(v).
After pre-computing the values of pw, Rw,t, and qw, we can finally express

the tipping point τ as a linear combination

τ = v −
v∑

w=0

qwRw,t, (5)

rounded to the nearest integer.
In total, the computation requires O(tv) time and O(v) space.

6.4.3 Tail Bounds

Next, we prove lower and upper bounds on the probability of filling a single addi-
tional item slot during an Increment operation, Lemmas 6.2 and 6.3 respectively.
The proofs, which are intricate but not especially surprising, can be found in
Section 7.4.1.

In order to make our scheme practically realizable, we state and prove explicit
rather than asymptotic results, with all constants specified. These constants in
themselves are not particularly meaningful; rather, they represent the tightest
values which worked with our proof techniques and the parameter ranges we
deemed reasonable for the application in mind.

Lemma 6.2. Let x be an item such that at most τ of x’s item slots are filled.
If the CCBF parameters s, u, v satisfy v ≥ 7.042652τ and u ≥ 0.5184846 s

τ , then
the probability that a call to Increment(x,C) fills in one more of x’s item slots is
at least 0.956414.

Lemma 6.3. Let x be any item. If the CCBF parameters s, u, v satisfy 371 ≤ v ≤
0.00386s and u ≤ 3.65151 s

v , then the probability that a call to Increment(x,C)
fills in one more of x’s item slots is at most 0.974876.

Now we use the probability upper bound to prove an upper bound on the
tipping point τ .

Lemma 6.4. Let s, u, v be CCBF parameters that satisfy the conditions of
Lemma 6.3, and suppose m, t are integers such that s ≥ 96m and v ≤ 7.409t.
Then the tipping point τ , for threshold t and with m total set bits in the table
T , is at most 1.0520553t.
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We can now state our main theorems on the accuracy of the CCBF data
structure. Consider a call to the predicate function TestCount(x, t), which
attempts to determine whether the number of prior Increment calls with the
same item x is at least t. Our exact computation of the tipping point r(t) shows
that this function always returns the correct answer with at least 50% probability.
But of course, so would a random coin flip!

Let k be the actual number of calls to Increment(x,C) that have occurred.
Then two kinds of errors can occur: a false positive if TestCount(x, t) returns
true but k < t, and a false negative if TestCount(x, t) returns false when k ≥ t.
Intuitively, both errors occur with higher likelihood when the true count k is
close to t. Our main theorem captures and quantifies this intuition, saying that,
ignoring low-order terms, TestCount is accurate to within a 10% margin of error
with high probability.

Theorem 6.5. Let n be an upper bound on the total number of calls to Increment,
and t be a desired threshold for TestCount. Suppose the parameters s, u, v for a
CCBF data structure satisfy the conditions of Lemma 6.2, and furthermore that
v ≤ 8t. If the actual number of calls to Increment(x,C) is at most t− 2.1

√
λt,

then the probability TestCount(x, t) gives a false positive is at most 2−λ.

Theorem 6.6. Let n be an upper bound on the total number of calls to
Increment, and t be a desired threshold for TestCount. Suppose the parameters
s, u, v for a CCBF data structure satisfy the conditions of Lemmas 6.2 and 6.4.
If the actual number of calls to Increment(x,C) is at least

1.1t+ .4λ+ .7
√
λt, (6)

then the probability TestCount(x, t) gives a false negative is at most 2−λ.

We can easily summarize the various conditions on the parameters as follows:

Corollary 6.7. Let n be a limit on the total number of calls to Increment,
and t be a desired threshold satisfying 50 ≤ t ≤ n

20 . Then by setting the
parameters of a CCBF according to s = 96n, v = 7.409t, and u = 47.31n

t , any
call to TestCount(x, t) will satisfy the high accuracy assurances of Theorems 6.5
and 6.6.

6.5 Instantiating FACTS
We are now ready to present our construction of FACTS. This construction
is based on the collaborative counting Bloom filter (CCBF) data structure
presented in Section 6.4 to obliviously count the number of complaints on each
message. It uses an underlying EEMS for sending end-to-end encrypted messages
between users.
Setup: The setup procedure for FACTS first sets up the underlying end-to-end
encrypted messaging system (EEMS). For simplicity, we assume that there is a
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fixed number c of users using the system. Setup generates all necessary keys for
the server S and all c users and distributes the keys. We note that if the messaging
system is already setup, FACTS can simply leverage this for communication.
Additionally, the server initializes an empty CCBF data structure.
Sending and receiving messages: We now describe how FACTS originates,
forwards, and verifies messages. We start our description with an auxiliary
protocol Originate(A, x) between a user A and the server S to originate a new
message x. This protocol is used to create an origination tag tagx containing
information about the message and originator. This tag binds the originator’s
identity A to the message x to enable recovery upon an audit, while keeping A
private from receiving users, and keeping the message x private from the server
S.

Roughly, this protocol works by having S produce a signature on (a hash of)
the message together with the originator’s identity. Due to the use of the hash,
S produces this signature without learning anything about the message, while
the fact that S includes the originator’s identity in this signature prevents a
malicious originator from including the wrong identity in the message. Moreover,
since the tag is bound to the message, this prevents a replay attack where an
adversary reuses tags across messages to change the identity of the originator.

Algorithm 26 Originate(A, x)

1. To originate a message x, the originator A chooses a random salt r ←
{0, 1}κ, computes a salted hash h = H(r||x), and sends h to S.

2. S computes an encryption of the sender’s identity, e← EncPKS
(A), and

produces signature σ = SigSKS
(h||e). S sends the tuple (e, σ) to A.

3. A outputs tagm = (r, e, σ).

Next, we describe the SendMsg protocol which makes use of the Originate
protocol to send a message x between clients A and B while preserving (encrypted)
information about the originator of x. x can either be a newly originated message
or a forward of a previously received message. In either case, SendMsg runs the
Originate protocol to produce a new tag tag′x on the message x. In the case of a
new message, tag′x is sent along with the message, while in the case of a forward,
it is discarded and the message is forwarded along with its original tag instead.

RcvMsg is a non-interactive algorithm that allows a receiving user to verify
the tag, tagx, affiliated with a message x. Specifically, the receiver B verifies the
server’s signature included in tagx to make sure that the tag indeed corresponds
to x and that the originator id has not been modified. Importantly, B can
perform this verification without learning the identity of the originator since the
tag contains an encryption of this identity (this ciphertext is what is verified by
B).
Complaints and Audit: We now describe how FACTS allows users to complain
about received messages and to trigger an audit once enough complaints are
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Algorithm 27 SendMsg(A,B, tagx, x)

1. If tagx =⊥, then x is a new message A wants to originate. A runs
tagx ← Originate(A, x).

2. If tagx ̸=⊥ x is a message that A wants to forward. A runs tag′x ←
Originate(A, x) and discards the output.

3. A sends (tagx, x) to B using the E2E messaging platform’s send protocol.

Algorithm 28 RcvMsg(A,B, tagx, x)

1. Parse tagx as tagx = (r, e, σ)

2. Compute h = H(r||x)

3. Run VerPKS
(σ, (h||e)) to check that σ is a valid signature by the server on

(h||e). If not, then discard the received message.

registered on a message. For these methods we make extensive use of a CCBF
data structure for (approximately) counting complaints and detecting when a
threshold of complaints has been reached.

The Complain protocol is used by a receiving user to issue a complaint on
a received message (tagx, x). We assume that prior to issuing a complaint the
user verifies that tagx is valid using the RcvMsg protocol, and thus will only
consider the case of valid tags. To issue a complaint on (tagx, x), the user C calls
CCBF.Increment(tagx, C). As described in Section 6.4, this runs a protocol with
the server in which the user (eventually) sends the location of a bit to flip to 1 to
increment the CCBF count for the message x. To prevent malicious adversaries
from flooding FACTS with complaints, we enforce a limit of L complaints per
user per epoch. Note that since the server knows the identities of complaining
users, he can easily enforce this restriction.

Two important observations are in order here. First, we use tagx rather than
the message x as the item to increment in the CCBF. The reason for this is that
the tag is unpredictable to an adversary who has not received the message x
through FACTS (even if A knows x). Second, we note that the CCBF.Increment
procedure is inherently sequential. It requires that the CCBF table T be locked
for the duration of the Increment call to prevent race condition and to maintain
obliviousness (see Section 6.4 for discussion). This means that only one user can
run this procedure at a time. Thus, we focus on making this procedure as cheap
as possible to minimize the impact of this bottleneck. In case multiple clients
call Complain at overlapping times, the server can queue these complaints and
process them one at a time.

The Audit protocol checks whether a threshold of complaints has been reached
for a given message x and, if so, triggers an audit of this message. This protocol
works by using the CCBF.TestCount protocol to check whether the threshold t
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Algorithm 29 Complain(C, tagx, x)
1. Parse tagx as tagx = (r, e, σ)

2. Call CCBF.Increment(C, tagx)

of complaints has been reached on this message. If this returns True, then the
user simply sends (tagx, x) to the server who first checks the validity of the tag,
and then if it’s valid, decrypts the corresponding part of the tag to recover the
identity of the message originator.

An important observation is that the CCBF.TestCount operation is read-only
and thus does not need to block. Thus, unlike the Complain command, many
clients can execute the Audit command in parallel.

Algorithm 30 Audit(C, tagx, x)
1. Parse tagx as tagx = (r, e, σ)

2. Call CCBF.TestCount(tagx, t).

3. If TestCount returns True, x sends (tagx, x) to S

4. S verifies that the tag is valid by checking the σ is a valid signature on
h||e where h = H(r||x).

5. If so, S recovers the identity (A) of the originator by computing A =
DecSKS

(e).

We note that Audit allows the server to learn the message x and the originator
A. We do not specify what the server does upon learning this information, as
that is specific to a particular use of FACTS. One possible option is for the
server to review x to see if it is truly a malicious message, and if so, block the
user A from sending further messages. However, this decision is orthogonal to
the FACTS scheme and we do not prescribe a particular action here.

6.6 Experimental Evaluations
In this section, we empirically evaluate the accuracy and performance of FACTS.
We perform two sets of experiments. The first, measures the error in terms of
number of complaints above or below the threshold as a function of the total
number of complaints. The second, measures the performance overhead for
messaging and complaint as a function of the threshold.

6.6.1 Experimental parameters

For our experiments, we set the maximum number of complaints per epoch
n = 1, 000, 000. If we consider an epoch of one day, this results in approximately
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Figure 9: The (left) Mean and (right) Relative Standard Deviation of Experimental
Explicit Threshold vs. The Number of Background Complaints.

11.6 complaints per second. To understand accuracy and efficiency of FACTS,
we measure them for a range of thresholds 100 ≤ t ≤ 1000. With these fixed,
we set the remaining parameters according to Corollary 6.7. In particular, we
set the server’s storage s = 96n = 12MB. The user set size u varies from
(approximately) 47,000 to 470,000 bits, while the message set size v goes from
(approximately) 740 to 7400.

6.6.2 Accuracy and stability

To measure the accuracy of FACTS, we observe the actual number of complaints
necessary to cause an audit on a single message as a function of the background
noise (i.e., total complaints on other messages). We calculate both the mean
and the standard deviation of this value to capture the accuracy and stability of
the complaint mechanism. To get a statistically meaningful estimate of these,
our experiments run 1000 iterations of each parameter configuration.

The results of our experiments are presented in Figure 9. The left side
of this figure shows the mean number of complaints to trigger an audit for
a given threshold t. As can be seen from the error bars, the absolute errors
in number of complaints is quite small, with a maximum deviation of about
10 complaints at a threshold of 1000. Not surprisingly, we see that this error
increases as the background noise increases, but the mean number of complaints
remains remarkably steady at the desired value. The right side of Figure 9 shows
the relative standard deviation of the number of complaints as a function of
background noise. From this graph we can see that the relative error is only a
few percent, with a maximum relative error of about 3.5%. Not surprisingly, the
threshold 100 measurement incurs the highest relative error because the noise
is a much higher ratio when compared to the threshold. These experiments
suggest that FACTS achieves good accuracy for a wide variety of threshold and
background noise.
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Figure 10: Average complaint time as a function of the threshold with n = 1, 000, 000
complaints per epoch. Complaint time is measured as the average of 100 samples and
has a variance of less than 5ms. Network latency shows the minimum latency required
to transmit 3 sequential messages over the network, a lower bound on complaint time.
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6.6.3 Performance overhead

Our next set of experiments measures the performance overhead of FACTS as a
function of the threshold to start an audit. Specifically, we measure the overhead
of sending a message using FACTS, and the cost of issuing a complaint. We
note that for the message sending cost, we do not measure the cost of the EEMS
communication, instead only measuring the added overhead due to FACTS.

For these experiments, we implemented both the client and server using
the Rust programming language. We used SHA-3 for a hash function, and for
encryption and signatures we used Rust’s ring library [166] implementation of
OpenSSL’s ChaCha20-Poly1305 protocol and Ed25519 respectively. To instanti-
ate the CCBF, we used a simple library bitvec [150] that allows memory to be
bit addressed, rather than byte addressed, which gains us a quick, compact way
to store the CCBF data structure.

To simulate network overhead, we implemented a simple web server and
client, which communicated over a (simulated) 8 Mbps network with a latency
of 80ms, using TLS 1.3. Since we are only measuring the overheads of FACTS
over the underlying EEMS, our measurements did not include the time to send
the message over the EEMS, nor the time to establish the TLS connection. All
experiments were run on a 4.7Ghz Intel Core i7 with 16GB of RAM, with a
sample size of 100 for each metric. As in the accuracy experiments, we set
n = 1, 000, 000 and threshold varying from 100 to 1000, with the remaining
parameters determined by Corollary 6.7.

For our measurement of message origination we looked at the cost of origi-
nating and sending a message of size 2MB. Creating and sending such a message
with the encrypted hash and identity took 98ms, which indicates that the major
bottleneck in this process is the 80ms network latency. We see then that when a
user wishes to forward a message, they will still call Originate(A, x), but then
forward the original message whereas in an EEMS this would just require a
forward. Thus, the overhead of FACTS on a forward is slightly less than 100ms.

Figure 10 shows our measurements of the time to issue a complaint as a
function of the audit threshold. The time for this is dominated by the time to
retrieve the user set (i.e., the bits that the user can write) from the server. Since
the size of this set u = O(n/t), this time grows inversely with the threshold t.
Thus, as the threshold increases, the total complaint time decreases very quickly,
going down to essentially just the network latency when t ≥ 400.

These experiments show that both the (added) cost of sending messages and
the cost of complaints (for sufficiently large t) are dominated by the networking
costs. Thus, as long as the latency of the network is reasonable, FACTS can
scale to millions of complaints per day.

6.7 Security of FACTS
In this section we analyze the security of FACTS. We provide security definitions
capturing the privacy and integrity guarantees provided by FACTS and prove
that our protocols described in Section 6.5 achieve these definitions.
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6.7.1 Adversary Model

We consider two different types of adversaries against FACTS. The first is an
honest-but-curious server S. Such a server may also collude with some of the
users. However, all such users, as well as the server, will follow the protocol. This
adversary class models what the FACTS server learns in running the system,
so we want to limit what the server learns. However, we have to assume that
the server acts honestly, as a malicious server can fully break the integrity and
availability of FACTS. For example, since the server produces the signatures
binding originators to messages, a malicious adversary with knowledge of this
key could arbitrarily assign originators by forging this signature.

We also consider a second type of adversary controlling a group of malicious
users who do not collude with the server. Such users may want to violate
the confidentiality of FACTS by learning extra information about messages or
complaints, beyond what they learn through the messages they validly receive.
Or, they may want to break the integrity of the complaint and audit mechanism
of FACTS to blame innocent parties for audited messages, or to delay or speed-up
the auditing of targeted messages. This models an external adversary, say a
malicious company or government, who may want to distribute fake information
without being audited or may want to block certain information or users from
the system.

6.7.2 Privacy

We begin by looking at the privacy guarantees provided by FACTS.
Privacy vs. Server: We first give a definition for privacy against a semi-honest
server who may also collude with some semi-honest users. In this setting we aim
to argue that unless a message is audited or is received by an adversarial user,
the server learns no information about the message or the complaints on the
message. In particular, the server should not be able to tell whether any message
is a new message or a forward and how many, if any, complaints this message
may have. In fact, the only thing that the server learns is the metadata of who
is sending messages to whom and who is issuing complaints, but not anything
more.

Specifically, we propose a real-or-random style definition to capture privacy
against the server. This definition captures the fact that the view of the server
(and colluding users) until a message is audited or received by a colluding user
just consist of random values, and thus is independent of the messages and
complaints.

Concretely, we define the following game between an adversary A controlling
the server (and possibly some colluding users) and a challenger.

Gameserver-privacyEEMS (A):

1. The challenger runs Setup(c) to set up the EEMS with c users. He hands
all keys corresponding to corrupted parties to A
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2. A chooses a sequence of messages ((send, A0, B0, tagx0
, x0), . . . , (send, Aℓ, Bℓ, tagxℓ

, xℓ))
12,

and a sequence of complaints ((complain, C0, tagxc
0
, xc

0), . . . , (complain, Cℓ′ , tagxc
ℓ′
)

and interleaves them arbitrarily. We require that none of the sending users
(Ai), receiving users (Bi), or complainers (Ci) are controlled by A.

3. The challenger chooses b← {0, 1} and does the following:

(a) If b = 0, Run the SendMsg and Complain protocols with inputs
supplied by A, giving A the resulting server view.

(b) If b = 1,

• for each SendMsg command, choose r ← {0, 1}κ and send this to
S. Choose x′ ← {0, 1}|x|+|tagx| and send x′ from Ai to Bi using
EEMS.send.

• The challenger maintains a set USED ⊆ [s]13. For each Complain
command, the challenger chooses ind ← [s] \ USED, sends ind
from ui to S, and adds ind to USED.

4. A outputs a bit b′

5. We say that A has advantage

Advserver-privacyEEMS (A) = |Pr[b = b′]− 1/2|.

Definition 6.8 (Privacy vs. Server). A FACTS scheme is private against a
semi-honest server if the adversary has a negligible advantage in the game above
Advserver-privacyEEMS (A) ≤ negl(κ)

Theorem 6.9. FACTS is private against a semi-honest server

Proof sketch. First, consider the server’s view on a SendMsg command. This
view consists of a message h = H(r||m) for r ← {0, 1}κ and the leakage from
EEMS.send, i.e., the identities A and B, as well as |(tagx, x)|. Since the challenger
uses the same sender, receiver, and message length, the only thing left to prove is
that h is indistinguishable from random. Since r is chosen uniformly at random,
and H is a random oracle, H(r||m) is uniformly random to A unless A queries
H(r||m). However, since A makes at most poly(κ) queries to H, the probability
that he makes this query is at most poly(κ)/2κ ≤ negl(κ).

Next, we consider the Complain commands. The server’s view on a complaint
consists of the complainer’s ID C and an index in the CCBF to flip to 1. In a
real execution of Complain, this index is chosen at random from the set SC ∩ Vx

where SC = {i ∈ UC | T [i] = 0} and Vx is the list of item locations for x.14
However, since UC and Vx are chosen at random, we can equivalently sample a

12We note that since S ∈ A, A can produce valid-looking tags for each of these messages by
producing the necessary signatures.

13Recall that s is the size of the CCBF bit vector T
14Technically, the item used in the CCBF is the tag tagx, but we use x here for ease of

notation.
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random 0-index in the bit vector T and then choose UC and Vx conditioned on
them containing this location. Hence the location sent to the server is uniformly
random unless A makes the corresponding H query, which only happens with
negl(κ) probability.

The above theorem states that, beyond the meta-data of who sent a message
to whom and who has sent complaints and when, FACTS reveals no information
about messages and complaints to a semi-honest server until an audit occurs
(or a malicious user receives a message). Moreover, the view of the server is
completely random when conditioned on the meta-data. Now, suppose that a
message x is audited (or is received by an adversary-controlled user). When this
happens, the adversary learns the tag and message (tagx, x). This enables A to
learn the identity of the originator (by decrypting it from tagx) and to learn the
entire history of this message, i.e., the transmission and complaint history of x.
However, since the server’s view of all other messages is indistinguishable from
independent random strings (modulo the meta-data), the adversary does not
learn anything more about these messages as a result of an audit on x.
Privacy vs. Users We now proceed to analyze security of our protocol against
(possibly malicious) users that are not colluding with the server. This models
the case of a third party adversary that tries to learn information about the
messages and complaints in FACTS. Here, we no longer assume that a message
x is never received by a malicious user and thus we cannot use a real-or-random
style definition as before. Instead, we argue that a user cannot distinguish a new
message from a forwarded message unless another corrupted user has previously
seen that message. This also shows that a malicious user cannot learn the
identity of the message originator. Since users do not receive any communication
on complaints, we only consider message privacy here.

Concretely, we define the following game between an adversary A controlling
a set of users, and a challenger.

Gameuser-privacyEEMS (A):

1. The challenger runs Setup(c) to set up the EEMS with c users and gives all
key material for the corrupted users to A. Let B ∈ A be a user controlled
by the adversary.

2. A chooses messages x, x′ s.t. |x| = |x′| and honest users O,A /∈ A

3. The challenger chooses b | {0, 1} and does the following:

(a) If b = 0, the challenger runs SendMsg(O,A,⊥, x′) and
SendMsg(A,B,⊥, x) with A receiving the view of B.

(b) If b = 1, the challenger runs SendMsg(O,A,⊥, x) and
SendMsg(A,B, tagx, x) (where tagx is the tag received by A from
O).

4. A outputs a bit b′
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5. We say that A has advantage

Advuser-privacyEEMS (A) = |Pr[b = b′]− 1/2|.

Definition 6.10 (User privacy). A FACTS scheme achieves privacy against
malicious users if the adversary has a negligible advantage in the game above
Advuser-privacyEEMS (A) ≤ negl(κ)

Theorem 6.11. FACTS achieves privacy against malicious users.

Proof sketch. The view of B on an execution of SendMsg(·, B, tagx, x) consists
of the received message and tag (tagx, x) where tagx = (r, e, σ). Since e is
a semantically secure encryption of the identity of the originator, A cannot
distinguish between the case when e = Enc(A) (when b = 0) and the case when
e = Enc(O) (when b = 1) except with advantage negligible in κ. Additionally,
since tagx is generated identically both when b = 0 and b = 1 except for this
change in e, this means that tagx does not help A distinguish between these two
cases.

6.7.3 Integrity

We now turn to the integrity guarantees provided by FACTS. We aim for a few
different notions of integrity to show that malicious users cannot interfere with
the complaint and audit process. First, no adversary controlling a subset of the
users should be able to frame an honest user as the originator of an audited
message he did not originate. Second, an adversary controlling a subset of the
users should not be able to significantly delay the audit of a malicious message. In
particular, such an adversary should not be able to prevent a malicious message
sent by one of his users from being audited. Finally, an adversary controlling a
small set of users should not be able to significantly speed up the auditing of a
targeted message. In particular, such an adversary should not be able to cause
an audit without complaints from some honest users.

We begin by defining the following game between a challenger and an adver-
sary A controlling a subset of the users to capture the inability of an adversary
to forge a valid tag that it has not seen before.

GameunforgeabilityEEMS (A):

1. The challenger runs Setup(c) to set up the EEMS with c users and gives
all key material for the corrupted users to A.

2. A requests SendMsg operations on messages of its choice both from honest
and corrupted users. (A is given the view of corrupted users in all these
executions consisting of (tagx, x).)

3. A outputs a tag, message pair (tagy, y)

4. We say that A WINS if tagy is a valid tag for message y with originator
O /∈ A, and there has not been a prior command SendMsg(O, ·,⊥, y).
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Definition 6.12 (No framing). We say that a FACTS scheme disallows framing
if for any PPT A, A WINS in the above game with probability at most negl(κ).

Theorem 6.13. The FACTS scheme is unforgeable.

Proof sketch. A valid tag tagy with originator O consists of tagy = (r, e, σ) where
r is a random seed s.t. H(r||y) = h, e = EncPKS

(O), and σ = SigSKS
(h||e).

Thus, to frame O, A needs to produce a valid signature on h||Enc(O). A can
observe tags from polynomially many messages originated by Ø, but except with
probability negligible in κ none of them will have the same value h. Thus, by
the unforgeability of Sig, A cannot produce the necessary signature except with
probability negligible in κ.

Next, we give a definition that captures the ability of an adversary controlling
a subset of the users to delay the audit of a particular message. Our goal is to
show that the adversary cannot protect a malicious message from being audited.

Specifically, we define the following game,

Gameno−delayEEMS (A):

1. The challenger runs Setup to set up the EEMS with c users and gives all
key material for the corrupted users to A.

2. A issues a single SendMsg(A,B, x) command with A ∈ A to produce tagx

3. A outputs a list of Complain commands with at most n total complaints,
of which at least ℓ are complaints on tagx.

4. The challenger runs the specified complaint commands, and then runs
Audit(A, tagx, x)

5. We say that AWINS if this audit is not successful (i.e., the audit threshold
is not reached).

Definition 6.14 (No delay). We say that a FACTS scheme is ℓ-audit delay
resilient for integer ℓ < n if for any PPT A, A WINS in the above game with
probability at most negl(κ).

Theorem 6.15. The FACTS scheme is ℓ-audit delay resilient for any ℓ ≥
1.1t+ .4κ+ .7

√
κt.

Proof sketch. This follows immediately from Theorem 6.6

Next, we define the following game to capture the ability of a small number of
malicious users to cause the audit of some message. Importantly, this definition
also captures the case where malicious users try to audit an honest message (on
which there are no complaints by honest users). Specifically, the following game
is between an adversary A corrupting at most ℓ users and a challenger

Gameno−speedupEEMS (A):
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1. The challenger runs Setup to set up the EEMS with c users and gives all
key material for the ℓ corrupted users to A.

2. The challenger runs a single SendMsg(A,B, x) command for A /∈ A and
B ∈ A.

3. A may issue at most L Complain commands per each user he controls.15

4. The challenger runs the specified Complain commands, and then runs
Audit(·, tagx, x).

5. We say that A WINS if this audit is successful.

Definition 6.16 (No speed up). We say that a FACTS scheme is ℓ-party audit
speed-up resilient if for any PPT A controlling at most ℓ users, A WINS in the
above game with probability at most negl(κ).

Theorem 6.17. The FACTS scheme is ℓ-party audit speed-up resilient for
ℓ ≤ (t− 2.1

√
λt)/L.

Proof sketch. This follows immediately from Theorem 6.5 because each user
∈ A makes at most L complaints.

6.8 Alternative FACTS
In this section we describe several optimizations or enhancements to the basic
FACTS protocol.
Revealing even less during audits. Recall that the FACTS system we
presented reveals two things to the server (or an auditor) after the threshold
of complaints has been reached: the user id of the message’s originator, and
the contents of the message itself. Indeed, one of our motivations was to avoid
revealing the entire path or tree of message forwarding as in prior work [177].

However, in some environments, even this may be too much to release
to a service provider that could be, for instance, compromised or influenced
by an oppressive regime. An advantage of FACTS is that the system for
tallying complaints actually does not require this information in order to function
properly. Here we briefly sketch simple modifications to the scheme to achieve
this additional hiding, with a note of caution that we have not analyzed the
formal security under these variants.

Hiding the originator’s identity entails omitting the encrypted user id from
the origination protocol. To do this, the server’s signature σ of the message hash
and sender identity should be replaced with a blind signature of the message
hash only. In this way, a later audit which reveals the (unblinded) signature will
not reveal anything about the originator’s identity. The disadvantage of course
would be that there is no way for the system to identify and penalize users who
regularly submit fake news to the platform.

15Recall that FACTS enforces a limit of L complaints per user per epoch.
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To hide the message contents, these would simply be omitted from what is
sent to the auditor once the threshold is reached. In this case, the notion of
“audit” may be understood to be simply confirming that some message (with the
given hash) has passed the threshold of complaints, and publishing the hash to
all users as potentially fake news that has received a large number of complaints.
The client software could easily be configured to flag such messages as they
are received afterwards, without ever revealing to the server any contents or
recipients of such message. Here the disadvantage is obviously that no third-party
auditing or fact-checking is possible, raising the possibility of false positives in
which messages are flagged.
Throttling complaints. The FACTS system and underlying CCBF data
structure assume a global limit n on the number of complaints per epoch, but
do not require any per-user limit besides the natural limit of u, the size of the
user set.

However, there is some potential for abuse by users who issue many complaints
in a single epoch: they may attempt to “attack” another known message by issuing
multiple complaints that set bits in that message’s user set; they may collude
with others and attempt to go over the total per-epoch limit of n complaints; or
they may simply attempt a denial-of-service attack to prevent other complaints
from being issued.

An simple solution to these problems is to apply a limit≪ u on the maximum
number of complaints per user per epoch. This is easy for the server to apply,
since users are authenticated during the Complain protocol. More nuanced limits
based on a user’s reputation or longevity on the platform could also be applied.

Users with a small “quota” of allowed complaints per epoch could even
be encouraged to participate initially in the complaint process by forwarding
questionable content to a trusted reputable user on the system, who would
then presumably apply their own judgment and possible issue a complaint in
turn. This idea is aligned with many existing content moderation settings on
(unencrypted) social media platforms.
Handling epoch rollover. As described, the FACTS system resets all counters
at the end of a single epoch. However, this may mean that if a “fake news”
message is first detected towards the end of an epoch, the complaints for this
message may get split between the current and next epochs and thus fail to
trigger an audit in either epoch.

A potential solution to this problem is to always run two epochs concurrently,
where each epoch lasts for time t, and the epochs start times are t/2 apart.
Users complain in both of the epochs, and an audit occurs if the number of
complaints in either epoch exceed the threshold. This way, regardless when a
“fake news” message is first detected, there will be an epoch with at least t/2
time left to accumulate complaints. Since we assume that fake news messages
are ones that are received and complained on by many users, and that users are
likely to complain shortly after first receiving a message, this provides enough
time for a threshold of complaints to be reached.
Regional complaint servers. The most significant performance bottleneck in

126



FACTS is the necessary global lock on the table T while a single user is waiting
to download their user set UC and reply with their complaint index. Even though
the communication size is quite small for practical settings, the inherent latency
across global communications networks may impose a challenge.

For example, if many complaining users have a round-trip latency of more
than 200ms, then the global complaint rate among all users cannot be higher
than 5 complaints per second, or some 432,000 complaints per day, regardless of
any parameter settings or chosen epoch length.

One possible solution for a large-scale platform facing this issue would be to
allow multiple local complaint servers, each with their own CCBF table T , to
independently operate and accumulate complaints per messages. This makes
sense, as most targeted misinformation content is local to a given country or
region, and it would still be possible for each regional server to share audited
message information with others in order to prevent spread of viral false content
between regions.
Third-party audits. While many messaging and social media platforms
currently employ their own “in-house” teams for content moderation, there have
been some attempts at separating the role of the server from that of auditor.

From a protocol standpoint, we can imagine a separate Server and Auditor:
the former is semi-honest, handles the encrypted messaging system and maintains
the public CCBF table T . The Auditor is fully honest and non-colluding, but
computationally limited; intuitively, the third-party Auditor should only be
involved once a messaged has passed the desired threshold of complaints.

The FACTS system supports this option easily with the need for any addi-
tional cryptographic setup during origination. Because the CCBF table T is
globally shared among all users as well as the Auditor, any complaining user
who computes TestCount on their own to see that the probabilistic threshold
has been surpassed, can then forward their complaint (i.e., the opened message)
directly to the Auditor. Being fully honest, the Auditor may hold a copy of the
decryption key from origination and use this to determine what kind of action
may be necessary (such as suspending the originating user’s account, flagging
the message, etc.).

While it doesn’t appear idea imposes any additional interesting challenges
from a cryptographic standpoint, it could be useful for some kinds of messaging
platforms.
Hiding message metadata. Our FACTS system is certainly no more private
than the underlying EEMS which is being used to actually pass messages between
users. In our analysis, we explicitly assumed that the EEMS leaks metadata on
the sender and recipient of each message, but not the contents.

However, some existing EEMS attempt to also obscure this metadata in
transmitting messages, so that the server does not learn both sender and recipient
of any message. This can trivially be accomplished by foregoing a central server
and doing peer-to-peer communication (note that FACTS may still be useful
as a central complaint repository); or using more sophisticated cryptography to
hide metadata [35,51,175].
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Of particular interest for us is the recently deployed sealed sender mechanism
on the popular Signal platform [130]. The goal in this case is to obscure the
sender, but not the recipient, from the server handling the actual message
transmission. We note that this concept plays particularly well with FACTS, as
the additional leakage in our protocol of the identity of each complaining user,
can be presumably correlated via timings with the receipt of some message, but
this is exactly what is revealed under sealed sender already! Both systems thus
work to still hide message sender and originator identities (at least until an audit
is performed).

However, note that recent work [132] has shown that some timing attacks are
still possible under sealed sender, and the same attacks would apply just as well
to FACTS. But the solutions proposed in [132] might also be deployed alongside
FACTS to prevent such leakage; we leave the investigation of this question for
future work.

6.9 Related Work

Message Franking: The most common approach today for reporting malicious
messages in encrypted messaging systems is message franking [57, 95, 176]. Mes-
sage franking allows a recipient to prove the identity of the sender of a malicious
message. However, message franking is focused on identifying the last sender
of a message, whereas we are interested in identifying the originator. Moreover,
message franking does not provide any threshold-type guarantees to prevent
unmasking of senders given only one (or a few) complaints.
Oblivious RAM (ORAM): Oblivious Random-Access Memory (ORAM) [87,
90,143] allows a client to obliviously access encrypted memory stored on a server
without leaking the access pattern to the server. The standard ORAM definition
assumes a single user with full control over the database. While some important
progress has been made on multi-client ORAM protocols [38, 102, 131], these
solutions are still not scalable to millions of malicious users as would be needed
for our application.
Oblivious Counters and Oblivious Data-Structures: Like CCBF, oblivious
counters [86, 120] build counters that can be stored and incremented without
revealing the value of the counter. However, these techniques focus on exact
counting, and do not provide efficient ways for storing large numbers of counters,
as needed for our applications. More generally, oblivious data-structures, e.g. [122,
161,180] construct higher-level data structures such as heaps, trees, etc. to enable
oblivious operations over encrypted data. However, these largely focus on higher-
level applications and do not provide the compression achieved by CCBF.
Privacy-Preserving Sketching: CCBF can be viewed as a small data
structure (a sketch) for storing the counts of complaints on a large set of messages.
There has indeed been a lot of recent interest (e.g., [8,45,68,79,112,136,178]) in
private sketching algorithms for cardinality estimation, frequency measurement,
and other approximations. However, these works generally focus on a multi-party
setting, with multiple parties running secure computation to evaluate the statistic
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in question. Since our goal was to restrict ourselves to user-server communication
only, such techniques do not seem applicable to our setting.

7 Omitted Proofs

7.1 Secure Search
7.1.1 Proof of Lemma 3.4

Lemma 7.1 (4.1). Consider a Bloom filter with false positive rate 1
m , where

m is an arbitrary positive integer. Suppose at most m BF.Check operations are
performed in the BF. Then, for any δ > 0, we have:

Pr[# false positives ≥ 1 + δ] ≤ eδ

(1 + δ)(1+δ)
.

Proof. Let αi be the ith item that is checked through BF.Check. That is, we
consider a sequence of

BF.Check(α1), . . . ,BF.Check(αm),

where αi is an arbitrary item. Since we wish to upper bound the false positives
(i.e., we don’t care about true positives), it suffices to consider the case that for
every i, αi ̸∈ BF (i.e, αi has not been inserted in the BF) as this maximizes the
number of possible false positives.

Let X1, . . . , Xm be independent Bernoulli random variables with Pr[Xi =
1] = 1/m. Since the BF false positive rate is assumed to be 1/m, we have for all
i,

Pr[BF.Check(αi) = 1] = Pr[query i is a false positive] ≤ 1/m.

Thus, we can bound the number of false positives by
∑m

i=1 Xi.
Now, let µ := Exp[

∑
Xi] = m · 1

m = 1. By applying the Chernoff bound
with µ = 1, we have:

Pr

[
m∑
i=1

Xi ≥ 1 + δ

]
≤ eδ

(1 + δ)(1+δ)
.

7.1.2 Proof of Theorem 3.8

Theorem 7.2 (6.3). Given an FHE scheme, and a (n, s, c, fp)-CODE scheme
over domain D in the random oracle model, the construction in Algorithm 8
yields a (ℓ, fp)-secure search scheme for records in domain D in the random
oracle model, where ℓ = c(s)·ℓc

s , ℓc is the length of an FHE ciphertext with
plaintext space D, and s is the number of matching records.
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Proof. We begin by proving that the adversary cannot distinguish between two
different queries. The adversary chooses a database x and two queries q0, q1,
with the promise that s =

∑n
i=1 q

0(xi) =
∑n

i=1 q
1(xi).

The entire view of the adversary during the experiment can be reconstructed
efficiently given (1) the encrypted database JxK, (2) the encrypted query JqK, (3)
the decrypted value of s.

We note that the CODE scheme may return either more than s values to the
client (in case of a false positive) or less than s values (in case decoding fails),
but both of these occur with probability at most negl(κ) and thus we can ignore
them in the following.

Since the value of s is the same for q0 and q1, the only thing that changes in
the view of the adversary when switching from b = 0 to b = 1 is the encrypted
query q̃b. Therefore, the adversary guesses b with negligible advantage by the
IND-CPA security of the FHE scheme.

The proof that the adversary cannot distinguish between the same query
applied to two different databases follows nearly identically.

7.2 Secure Sampling
7.2.1 Definitions

We assume that readers are familiar with security notions of standard crypto-
graphic primitives [119] and formal definitions of a protocol securely realizing an
ideal functionality (cf. [71]).
Ideal functionality F2PC

The ideal functionality works as follows:

F2PC : Ideal functionality for evaluating two-party circuits.

The functionality has the following parameter:

• Two party binary circuits C1(·, ·) and C2(·, ·).
The functionality proceeds as follows:

1. Receive inputs x1 and x2 from P1 and P2 respectively.

2. Send C1(x1, x2) to P1 and C2(x1, x2) to P2.

It is well know that Yao’s protocol securely realizes F2PC in the semi-honest
security setting with a constant round and O(|C1|+ |C2|) communication [128].
Differential privacy
We say that two vectors d = (d1, d2, . . .) and d′ = (d′1, d

′
2, . . .) are neighboring if

they have the same length, and there exists only one index i s.t. di ̸= d′i.

Definition 7.3 (Differential privacy with a trusted curator [61, 64]). A mecha-
nismM satisfies (ϵ, δ)-differential privacy if for all neighboring data sets d and
d′, and all sets S ⊆ Range(M)

Pr[M(d) ∈ S] ≤ eϵ · Pr[M(d′) ∈ S] + δ
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Differential privacy in the two-party setting. Our presentation here
follows the similar definitions given in prior work [18,45,162]. For a two-party
protocol Π and an input (d1,d2), we let Π(d1,d2) denote the execution of Π
on this input. For an adversary A (corrupting either P1 or P2), we define Let
viewΠ

A(d1,d2) be the view of the protocol to A (consisting of input, the random
tape, the protocol transcript, and the output).

Definition 7.4. Let ϵ > 0 and 0 ≤ δ < 1. A (randomized) protocol Π preserves
computational two-party (ϵ, δ)-Differential Privacy, if for any PPT distinguisher
D, for any PPT adversary A, and for all neighboring inputs d := d1∥d2 and
d′ := d′1∥d′2, there exists a negligible function negl(·) such that,

Pr[D(viewΠ
A(d1,d2), 1

κ) = 1] ≤ eϵ · Pr[D(viewΠ
A(d

′
1,d
′
2), 1

κ) = 1] + δ + negl(κ)

Securely Realizing FbiasCoin with Semi-honest Security

We can securely realize FbiasCoin, by executing F2PC for the following circuit
Ccoinflip. Since we just execute F2PC with a circuit, security of the protocol is
immediate.

Ccoinflip(∥w1∥1, {r1,j}κj=1, b1, ∥w2∥1, {r2,j}κj=1, b2) ▷ rj , bj are random bits.

1. P1’s input is (∥wb∥1, {r1,j}, b1) and P2’s input is (∥w2∥1, {r2,j}, b2). We
require ∥w1∥1, ∥w2∥1, {r1,j}, {r2,j} ∈ {0, 1}κ, and b1, b2 ∈ {0, 1}.

2. Let s1 = ∥w1∥1 and s2 = ∥w2∥1. Let s = s1+s2. Compute mask = 0κ−h1h

such that s&mask = s and s|mask = mask where & (resp., |) denotes bitwise
AND (resp., bitwise OR) operation. Note that there is a single h satisfying
the above conditions, i.e., the effective bit-length h of s with 2h−1 ≤ s < 2h.
This computation can be done by checking all possible candidates of h one
by one in O(κ) steps.

3. For j = 1, ..., λ, let rj = (r1,j ⊕ r2,j)&mask. Note that it holds rj < 2h.

4. Find the first j∗ such that rj∗ ≤ s. If there is no such j∗ output error.

5. Compute b = b1 ⊕ b2.

6. If rj∗ ≤ s1, output b to both P1 and P2. Otherwise, output b to P1 and
b⊕ 1 to P2.

Note that Pr[rj > s] = 1 − s/2h < 1/2. Therefore, with λ repetitions, we
have a good j∗ with probability 1− 2−λ. Finally, we have Pr[rj∗ ≤ s1|rj∗ ≤ s] =
s1
s = p.

7.2.2 Proofs

Proof of Theorem 4.1
We describe the simulator Sim in the {Fosample(L1),F2PC}-hybrid model for the
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case that Party 1 is corrupted. The simulator and proof of security are analogous
in the case that Party 2 is corrupted.

Sim receives as input w1, the output i∗, and ||w1 +w2||2. Sim samples r∗

from a geometric distribution with success probability p = ||w1 +w2||22.
Sim invokes Party 1 on input w1. For i ∈ [r∗ − 1], Party 1 sends its input

to the first three invocations of Fosample(L1) and Sim returns to it three random
values in Zn. Party 1 sends its input to the second three invocations of Fosample(L1)

and Sim returns to it three random values in Zn. Party 1 sends its input to
the F2PC functionality and Sim returns to it ⊥. For i = r∗, Party 1 sends its
input to the first three invocation of Fosample(L1) and Sim returns to it three
random values in Zn. Party 1 sends its input to the second three invocations of
Fosample(L1) and Sim returns to it three random values in Zn. Party 1 sends its
input to the F2PC functionality and Sim returns to it i∗.

It is clear that the view of Party 1 is identical in the ideal and real world,
assuming that Sim samples the first succeeding round, r∗, from the correct
distribution. In the following, we argue that this is indeed the case.

As was shown in the correctness analysis, if the protocol has not already
halted before round r, then the probability of halting (and outputting some valid
index) in round r is:

||w1||2 + 2⟨w1,w2⟩+ ||w2||2 = ||w1|w2||22.

Since r∗ is defined as the round in which the protocol halts, the distribution on
r∗ is exactly the distribution on the number of Bernoulli trials (with probability
p = ||w1|w2||22) needed to get one success. Sampling the number of rounds is
therefore equivalent to sampling the random variable corresponding to the number
of rounds from a geometric distribution with success probability p = ||w1|w2||22,
which is exactly what Sim does.
Proof of Theorem 4.2
We first give the simulation of the sender. The simulator proceeds as follows:

• Send w to Fosample(L1) and receive π as the output. Place π on the random
tape of the sender.

• Simulate the output of F2PC by sending a random r1 to the sender.

• Simulate the key generation protocol honestly.

• Send a random encryption for Jr2K in Step 4.

Due the semantic security of the underlying FHE scheme, the simulation is
indistinguishable. Next, we give the simulation of the receiver.

• The simulator receives output i⊕ π from Fosample(L1).

• The simulator works as functionality F2PC sending a random r2 as the
output to the receiver.
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• The simulator runs the key generation protocol honestly, and stores the
threshold decryption key of the sender.

• In step 6, the simulator computes c := Ji⊕ πK and sends it to the receiver.

• The simulator runs the threshold decryption protocol honestly.

The simulation is perfect.
Proof of Theorem 4.10
We describe the simulator Sim in the {Fss

L1
,F2PC}-hybrid model for the case

that Party 1 is corrupted. The simulator and proof of security are analogous in
the case that Party 2 is corrupted.

Sim receives as input w1 and the output i∗. Sim invokes Party 1 on input
w1. For j ∈ [B], the simulator works as follows:

• Upon Party 1 sending its input to FL1
, Sim returns a uniformly random

share r

• In place of the encryption of w2,ij from Party 2, Sim sends Party 1 an FHE
ciphertext encrypting 0.

• Upon Party 1 sending its input to F2PC , Sim returns to Party 1 an FHE
ciphertext encrypting 0.

The only differences in the view of Party 1 in the ideal and hybrid worlds, are
that (1) In the hybrid world it gets a secret share of ij , whereas in the ideal world
it gets a uniformly random value; (2) In the hybrid world it gets an encryption
of w2,ij from Party 2, whereas in the ideal world it gets an encryption of 0; (3)
In the hybrid world it gets encryptions of ij or 0 from the ideal functionality
F2PC , whereas in the ideal world it always gets encryptions of 0.

Receiving uniformly random values instead of correct secret shares does not
affect the view of Party 1, since the additive secret sharing used has perfect
secrecy. Further, switching from encryptions of w2,ij and ij to encryptions of 0
is indistinguishable due to the semantic security of the threshold FHE scheme.
Thus, the view of Party 1 is computationally indistinguishable in the hybrid
world and the ideal world.

This concludes the proof of security of the L2 sampling protocol.
Proof of Lemma 4.15
We want to show that

Pr
DLp (w1,w2)

[i] =
(w1,i + w2,i)

p

||w1 +w2||pp

=
(w1,i + w2,i)

p

c · (||w1||pp + ||w2||pp)

≤
2p−1(wp

1,i + wp
2,i)

c · (||w1||pp + ||w2||pp)
= 2p−1/c · Pr

Dignore,p(w1,w2)
[i].
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The inequality holds due to Jensen’s inequality with convex function f(x) = xp:

1/2p · (w1,i + w2,i)
p = f(1/2 · wi,1 + 1/2 · wi,2)

≤ 1/2 · f(wi,1) + 1/2 · f(w2,i)

= 1/2(wp
i,1 + wp

i,2).

This completes the proof of Lemma 4.15.
Proof of Lemma 4.16
Note that ΠLp

simply performs rejection sampling in a distributed setting where
sampling from Dignore,p(w1,w2) and computing the probabilities is done in a
distributed manner. It is therefore well-known that as long as for all i ∈ [n],

Pr
DLp (w1,w2)

[i] ≤ 2p/c · Pr
Dignore,p(w1,w2)

[i], (7)

then ΠL2 samples from the exact correct distribution, and the number of samples
required from Dignore,p(w1,w2) in protocol ΠL2

follows a geometric distribution
with probability c/2p. Thus, if condition (7) is met, the protocol samples exactly
correctly and completes in an expected 2p/c ≤ 2p ∈ Õ(1) number of rounds
(since c ≥ 1 and p ∈ O(1)). Further, it can be immediately noted that condition
(7) is met due to Lemma 4.15. Finally, each round has Õ(1) communication,
since Πignore has communication Õ(1) (by Lemma 4.12) and since, in addition to
that, only a constant number of length Õ(1) values are exchanged in each round.
Combining the above, we have that ΠLp has expected communication Õ(1) and
worst case (with all but negligible probability) communication Õ(1).
Proof of Lemma 4.23
We will show that the joint distribution over the i-th entries of w̃1 := Mw1 =
(w̃1,1, . . . , w̃1,k), w̃2 = Mw2 = (w̃2,1, . . . , w̃2,k) can be sampled perfectly, given
only ⟨w1,w1⟩, ⟨w2,w2⟩, and ⟨w1,w2⟩.

Due to independence of each of the coordinates of w̃1, w̃2, this immediately
implies that the entire approxIP(w1,w2) can be simulated perfectly given only
⟨w1,w1⟩, ⟨w2,w2⟩, and ⟨w1,w2⟩.
We begin by noting that

w̃1,i = w1,1Mi,1 + w1,2Mi,2 + · · ·+ w1,nMi,n

w̃2,i = w2,1Mi,1 + w2,2Mi,2 + ·+ w2,nMi,n

In the following, we show how to jointly sample (w̃1,i, w̃2,i).

Step 1: We begin by sampling from the marginal distribution over the first
element of the tuple w̃1,i. Note that w̃1,i is distributed exactly as a
Gaussian random variable with mean 0 and variance ⟨w1,w1⟩. Thus, we
can perfectly sample from the marginal distribution over w̃1,i given only
⟨w1,w1⟩. Let z be the resulting sample.

Step 2: We would now like to sample from the conditional distribution w̃2,i,
conditioned on w̃1,i = z.
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First, the conditional distribution of Mi,1, . . . ,Mi,n conditioned on
w1,1Mi,1 + w1,2Mi,2 + · · · + w1,nMi,n = z is defined by the multivari-
ate Gaussian distribution with the following mean µ and covariance matrix
Σ (see Corollary 7 in [55]):

µ =
z

⟨w1,w1⟩
·w1, Σ = I− w1w

T
1

⟨w1,w1⟩

Now, w̃2,i is a linear combination of the variables Mi,1, . . . ,Mi,n with
coefficients w2,1, . . . , w2,n. Therefore, w̃2,i is distributed as a univariate
Gaussian with mean µ′ and variance σ′ as follows (see [129] for example).

µ′ = ⟨w2, µ⟩ =
z⟨w1,w2⟩
⟨w1,w1⟩

and

σ′ = wT
2 Σw2 = wT

2 w2 −
wT

2 w1w
T
1 w2

⟨w1,w1⟩
= ⟨w2,w2⟩ −

(⟨w1,w2⟩)2

⟨w1,w1⟩

Note that the mean and variance depend only on ⟨w1,w1⟩, ⟨w2,w2⟩, and
⟨w1,w2⟩, so we can sample from this distribution given only those values.
Let y be the resulting sample.

Step 3: Output (z, y)

7.2.3 Realizing Fosample(L1) with OT with Less Precision

We implement oblivious sampling using a 1-out-of-m OT scheme. In particular,
the receiver, as an OT receiver, chooses a random index from [m], and the sender,
as an OT sender, prepares an m-dimensional input vector that encodes the L1

distribution of w in a way that we will describe soon.
Assumption about the level of precision of the input. With this approach,
each element from the prepared OT input vector will be chosen uniformly with
probability 1

m . Therefore, the size m affects the level of precision of the sampling.
In particular, we set µ := 1/m as a precision unit, and we assume the following:

For each i ∈ [n], it holds that wi

∥w∥1 is a multiple of µ.

If the input vector w is not consistent with the above requirement, one can
round it by using the following function roundingµ(w):

roundingµ(w)

1. Let w = (w1, . . . , wn). For i = 1, . . . , n, compute w′i = truncµ(wi). Here,
for any real number x with x ∈ [0, 1], denote truncµ(x) = x̃ · µ where x̃
is an integer that minimizes ∆ := x− x̃ · υ subject to ∆ ≥ 0. Typically,
we have µ = 2−q for a certain positive integer q, and truncµ(x) is simply
truncating the lower order bits in the binary representation of x.
Let w′ = (w′1, . . . , w

′
n).
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2. Repeat the following until L1 norm of w′ becomes 1.

Find j = argmaxi∈[n](wi − w′i), and increase w′j by µ.

3. Output w′.

The above algorithm makes sure that for all i, it holds |w′i − wi| < µ, which
means w′ is a good approximation of w, with each element having an additive
error of at most µ. To see why, note that in step 1, some w′is will get truncated
leading to small difference, i.e., wi − w′i < µ. In step 2, since the truncated
weights are added back to the elements in decreasing order of difference (wi−w′i),
only some of the truncated w′is will be updated to w′i + µ (which will still be
close to wi) until the L1 norm of w′ becomes 1.

In a situation where the low precision is acceptable, this OT-based solutions
could be more efficient. However, if one needs a higher level of precision, we
recommend using the FHE-based solution described in the next subsection. We
also observe that by using an OT protocol with O(logm) communication [108,
Theorem 2.2], we expect we could support fairly large values of m. The bottleneck
on larger m is likely to be storage, and the computation time needed for the OT.

Protocol 31 Oblivious sampling protocol realizing Fosample(L1) based on 1-out-
of-m OT
Inputs: The sender has input w. We require every wi/∥w∥1 is a multiple of
µ := 1

m .

1. The sender computes the following:

(a) Given w, the sender prepares an m-dimensional input vector as
follows:

(b) For i = 1, . . . , n, do:

Let ki =
wi

∥w∥1 · m. Insert ki copies of the index i into the m-
dimensional vector v; that is, there should be ki slots (out of m)
whose value is i in the m-dimensional vector v.

Note that for each i, the fraction of the slots containing the index i
in v is ki

m = wi

∥w∥1 .

(c) The sender chooses a random pad π uniformly at random.

(d) Let v = (v1, . . . , vm). The sender shuffles v and blinds it by updating
vi := vi ⊕ π with a randomly chosen π.

2. Execute an OT protocol where the sender is the OT sender with input v
and the receiver is the OT receiver with a randomly chosen number from
[m]. Let u be the output to the OT receiver.

3. Output π to the sender and output u to the receiver.
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Oblivious sampling protocol. With the assumption about the level of
precision of the input vector w, we can implement oblivious sampling. See
Protocol 31.

Due to security of the OT protocol, the OT sender won’t know the OT
receiver’s choice. However, since the OT receiver does know the sampled index,
which leaks information about the data array, we hide this information from the
OT receiver by having the OT sender shuffle the input vector.

At the end of the OT protocol, the sender and receiver will hold the sampled
index i in a secret shared form; that is, the sender will hold π and the receiver
π ⊕ i. Note that the sender re-uses the same π across all inputs, in order to
fix its share, independently of the receiver index. Security holds even with the
re-use of this value because the receiver learns only a single element.
Security. We will prove the following theorem.

Theorem 7.5. Protocol 31 securely realizes Fosample(L1) in the semi-honest
security model.

Proof. We first give the simulation of the sender. This is trivial in the OT-hybrid
model, as the sender receives no messages in this protocol. The simulator submits
the sender’s input to Fosample(L1), and recieves π as output. It places π on the
sender’s random tape, accepts the sender’s input to the OT functionality, and
terminates.

Next, we give the simulation of the receiver. The simulator submits input to
Fosample(L1), and receives output u. Upon receiving OT choice from the adversary,
it feeds u to the adversary as the OT output. The simulation is perfect, since
the view of the adversary contains nothing more than u.

7.2.4 L1 Sampling Protocol with Secret Shared Output

We give a more formal description of the functionality Fss
L1

.

FL1 : Ideal functionality for two-party L1 sampling

The functionality has the following parameter:

• n ∈ N. The dimension of the input weight vectors w1 and w2.

The functionality proceeds as follows:

1. Receive inputs w1 and w2 from P1 and P2 respectively.

2. Sample i ∈ [n] with probability w1,i+w2,i

∥w1+w2∥1

3. Choose a random number π consisting of ⌈logn⌉ bits.

4. Send π to P1 and i⊕ π to P2.

We describe a protocol securely realizing Fss
L1

in the (Fosample(L1),FbiasCoin)-
hybrid.

Security of the protocol can be shown similarly to Theorem 4.1.
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Protocol 32 Protocol securely realizing Fss
L1

in the (Fosample(L1),FbiasCoin)-hybrid.
Inputs: Party Pb has input wb.

1. Execute Fosample(L1) with P1 as a sender with input w1 and P2 as a receiver.
Let ⟨i1⟩ be the secret share of the output index.

2. Execute Fosample(L1) with P2 as a sender with input w2 and P1 as a receiver.
Let ⟨i2⟩ be the secret share of the output index.

3. Execute FbiasCoin where P1 has input ∥w1∥1 and P2 has input ∥w2∥1. Let
⟨b⟩ be the secret share of the output bit. In addition, P1 chooses random
bits π.

4. Execute F2PC for the following circuit:

(a) Input: ⟨i1⟩, ⟨i2⟩, ⟨b⟩, π.

(b) Compute i = i1 · (1− b) + i2 · b.
(c) Output π to P1 and π ⊕ i to P2.

7.3 Min-Hash
7.3.1 Proof of Lemma 5.4

Let c = p/(1− p). We need to find a < np and b > np satisfying the following
condition.

PrB(n,p)[a]

PrB(n,p)+s[a]
=

(
n
a

)
pa(1− p)n−a(

n
a−s
)
pa−s(1− p)n−a+s

<

(
n− a

a− s

)s

· cs ≤ eϵ.

PrB(n,p)[b]

PrB(n,p)+s[b]
=

(
n
b

)
pb(1− p)n−b(

n
b−s
)
pb−s(1− p)n−b+s

>

(
n− b

b

)s

· cs ≥ e−ϵ.

Case 1: s ≥ ϵ. We set a = np+s(1−p)·eϵ/s
eϵ/s·(1−p)+p

and b = eϵ/s·np
(1−p)+eϵ/s·p . Note these

values satisfy the above inequalities.
To show the second requirement of the tail bound, it suffices to show that

PrB(n,p)[X ≤ a+ s] = negl(κ); the other case holds similarly.
Let µ := np ∈ Θ(κ) and let d = 1 − (a + s)/µ. By applying the Chernoff

bound, we have

Pr
X←B(n,p)

[X ≤ a+ s] = Pr[X ≤ (1− d)µ] ≤ exp(−d2µ/2).

We will show that we have d = Ω( 1
lg lg κ ), which implies that with µ ∈ Θ(κ), the

above probability is negligible in κ. Let t = s(1−p) ·eϵ/s and u = eϵ/s ·(1−p)+p.
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Then, we have a = µ+t
u . Note that we have ϵ/s · (1− p) + 1 ≤ u ≤ e. We have

the following:

d =
µ− a− s

µ
=

(
1− 1

u

)
− t/u+ s

µ
≥ ϵ/s · (1− p)

e
− t/u+ s

µ
= Ω

(
1

lg lg κ

)
− Õ(1/κ).

Case 2: s ≤ ϵ. Let a = c
c+e · (n+ eϵ) < np and b = c

c+e−1 · n > np. Observe
that n−a

b−s · c = e and n−b
b · c = e−1. Therefore, given s ≤ ϵ, the above inequalities

hold. The tail bounds specified as the second condition of the lemma can be
shown using the Chernoff bound since np−a ∈ Θ(np) = Θ(κ) and so does b−np.

7.3.2 Proof of Lemma 5.8

Let t = 1
nR

, Let low = 1−
(
1
2 + θ

)t and high = 1−
(
1
2 − θ

)t. Then, we have:

Pr
h
[goodθ(h,A, I, nB)]

= Pr
h
[(minh(I) ≥ low) ∧ (minh(I) = minh(A))]

− Pr
h
[(minh(I) ≥ high) ∧ (minh(I) = minh(A))]

= Pr
h
[minh(A) ≥ low] · Pr [minh(I) = minh(A) | minh(A) ≥ low]

− Pr
h
[minh(A) ≥ high] · Pr [minh(I) = minh(A) | minh(A) ≥ high]

≥
(
1

2
+ θ

)t·nA

· nI

nA
−
(
1

2
− θ

)t·nA

· nI

nA

7.3.3 Proof of Lemma 5.9

We can lowerbound |Kθ| with B(k − s, pθ). Recall s ∈ O(lg lg κ). Let µ =
(k−s)pθ = Ω(κ). Applying the Chernoff Bound, we have Pr [|Kθ| ≤ (1− 1/3)µ] ≤
exp(−µ/18) ≤ negl(κ).

7.3.4 Proof of Lemma 5.10

Hockey stick divergence. We first review hockey stick divergence [13,159,190].
The hockey-stick divergence between two probability measures P,Q over Z is
defined as:

Dhs
α (X,Y ) = sup

S⊆Z
(X(S)− αY (S)) =

∑
z∈Z

[(X(z)− αY (z)]+,

where α ≥ 1 and [x]+ = max{x, 0}. We observe that the following holds directly
from the definition of the hockey stick divergence.

Corollary 7.6. For any probability measures X,Y over Z and for any ϵ, δ, it
holds

X ≈ϵ,δ Y if and only if Dhs
eϵ (X,Y ) ≤ δ and Dhs

eϵ (Y,X) ≤ δ.
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Proof of Lemma 6. Let η−θ = 1/2− θ and η+θ = 1/2 + θ. For brevity, we
let C denote PB(n, pJ). For any distribution D, let PD denote the probability
measure with respect to D. We first show that for any ϵ > 0, it holds that
Dhs

eϵ (PC , PC+1) is at most

max
(
Dhs

eϵ

(
PB(⌈n2 ⌉,η+θ), PB(⌈n2 ⌉,η+θ)+1

)
,Dhs

eϵ

(
PB(⌈n2 ⌉,η−θ), PB(⌈n2 ⌉,η−θ)+1

))
.

We start with an upper bound of the hockey-stick divergence is reached at
extreme points. We rely on the results in [42]. Although they use the Renyi
divergence, their results are general enough to be applied to any f -divergence.

Lemma 7.7. ( [42, Lemma 3.5])

Dhs
eϵ (PC , PC+1) ≤ max

j∈[n]
Dhs

eϵ
(
PB(j,η−θ)+B(n−j,η+θ), PB(j,η−θ)+B(n−j,η+θ)+1

)
. (8)

Next, we apply data processing inequality to simplify (8) from the above
lemma.

Lemma 7.8. ( [42, Lemma 3.6]) (8) is upper bounded by

max
(
Dhs

eϵ

(
PB(⌈n2 ⌉,η+θ), PB(⌈n2 ⌉,η+θ)+1

)
,Dhs

eϵ

(
PB(⌈n2 ⌉,η−θ), PB(⌈n2 ⌉,η−θ)+1

))
.

(9)

We extend the above to upper bound the hockey-stick divergence between
probability measures differed by an integer amount greater than 1, i.e., PC and
PC+s for s > 1.

Corollary 7.9. For any ϵ > 0, it holds that Dhs
eϵ (PC , PC+s) is at most

max
(
Dhs

eϵ

(
PB(⌈n2 ⌉,η+θ), PB(⌈n2 ⌉,η+θ)+s

)
,Dhs

eϵ

(
PB(⌈n2 ⌉,η−θ), PB(⌈n2 ⌉,η−θ)+s

))
.

Finally, to give a bound on the divergence, we can apply Lemma 5.4 to
argue that the binomial distribution hides the small sensitivity. Specifically, as
⌈n2 ⌉ ∈ Θ(κ) and s = lg lg κ, we can claim (ϵ, δ)-DDP with δ = negl(κ).

Similarly, it holds that Dhs
eϵ (PC+s, PC) ≤ negl(κ).

7.3.5 Proof of Theorem 5.6

On the definition of a θ-good iteration. We keep the same definition of a
θ-good iteration, except we set the exponent to 1/n′R, instead of 1/nR, and we
also require θ ≤ 1/10. In particular,

• minh(A) = minh(I) and minh(I) ∈
[
1−

(
1
2 + θ

)t
, 1−

(
1
2 − θ

)t] with

t =
1

n′R
.
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Bundle of good iterations Kθ. The total number of iterations in the min-hash
protocol πNMH is k = Ω(κ · lg lg κ). We require that nR/k

2 = Ω(κ).
Using Lemma 5.8, with all but negligible probability, at least Ω(κ · lg lg κ)

iterations are θ-good. Recall that Gθ denotes the set of θ-good iterations, and
Kθ = Gθ \ Sx∗ . We set kg = |Kθ|. We further divide these kg iterations into
u = lg lg κ bundles, each of which is of size kb = Ω(κ). Those bundles are denoted
by Kθ,1, . . . ,Kθ,u. We also let Kbad := Kθ.
Random variables for the protocol output. Let out+bad be the protocol’s
match count for sets A,B+x∗ w.r.t. the hash functions in Kbad:

out+bad := |{j ∈ Kbad : minhj(A) = minhj(B+x∗)}| .

Likewise, let outbad be the number of matches for sets A and B (instead of
B+x∗) in iterations in Kbad. Similarly, for i ∈ [u], we let out+i and outi denote
the output for the i-th bundle, with or without x∗ respectively. Note that
out+i = outi, since we ruled out Sx∗ from Kθ. Note that the final output of
the min-hash protocol for input B+x∗ is equal to out+bad +

∑u
i=1 outi; the final

output for input B is outbad +
∑u

i=1 outi. Let

out = out+bad||outbad||out1|| · · · ||outu.

We also consider the output with the ith bundle missing; that is, for i ∈ [u] let

out−i = out+bad||outbad||out1|| · · · ||outi−1||outi+1|| · · · ||outu.

Upper-bounding leakage from the output. Since |Kbad| and |Kθ,i| are at
most k ∈ poly(κ), we can safely assume that the total number of bits in out is

2 lg |Kbad|+
u∑

i=1

lg |Kθ,i| ≤ (2 + lg lg κ) lg |poly(κ)| ≤ κ.

Distribution of R and its min-entropy. The original distribution on the
secret set R is the uniform distribution over all sets of size nR with each element
is chosen from a universe U . The universe U has size ℓ · nR with ℓ ≥ 4(nR)

3.
Now choose, uniformly at random, a partition {U1, . . . , UnR

} of U where
each |Uj | = ℓ such that the element in the jth slot of R belongs to Uj . These
universes {U1, . . . , UnR

} are leaked in the analysis.
Let D denote the original distribution over the set R, but conditioned on

the leaked information {U1, . . . , UnR
}. The distribution D is equivalent to a

distribution over streams of nR elements, where the element in the i-th slot is
chosen uniformly at random from Ui. Therefore, D has min-entropy nR lg ℓ.

We additionally consider arbitrary leakage f(R) of length L such that

nR lg ℓ− L ≥ 8nR

9
lg ℓ+ 2nR.

Available iterations in a bundle. For a fixed set Z ⊆ R, in a min-hash graph,
we say that a set of iterations in the ith bundle Kθ,i is available with respect to Z if
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there are no edges from Z to that set. In other words, no elements in Z contribute
to the final count reduction for any of those iterations. In this sense, those
iterations are is still available for the count reduction by the other elements than
those in Z. More formally, consider a graph G ←MinhashGH1

(A, I, x∗, H2)
and letting G = (X ,Y, E), we define

AvailG(Kθ,i, Z) := {j ∈ Kθ,i : ∀z ∈ Z : (z, j) ̸∈ E)}.

Existence of a good bundle. We now describe an experiment to check
if the ith bundle of iterations is good in the sense that given the fixed hash,
the distribution D (after the leakage) satisfies the DP-like property conditions
specified in Lemma 5.13. Roughly speaking, Lemma 5.13 shows that a bundle
will be good with a high probability.

Process IsAGoodBundle(i,out−i,D, A, I, x∗, H1, H2):

1. Consider G←MinhashGH1
(A, I, x∗, H2).

2. Let D1,i := D | out−i. In other words, D1,i is the distribution D on R,
but conditioned on the output vector out−i. If D1,i has min-entropy less
than nR lg(ℓ)− L− 2κ then output FAIL1,i and terminate.

3. Check if if there is a leakage function fG(R) which leaks V = {j1, . . . , jn′
R
}

and T = AvailG(Kθ,i, R \R′) such that there exists a distribution with the
Geometric Collision Property over sets R′ = {xj ∈ R : j ∈ V }. If there is
no such distribution, output FAIL2,i and terminate. Let D2,i := D1,i|fG(R).

4. If it holds |T | ≤ 1
10 |Kθ,i|, output FAIL3,i and terminate. Let kv = |T |.

5. Compute DT,r(D2,i) and check if DT,r satisfies the conditions given in
Lemma 5.13. Output FAIL4,i and terminate, if the above check fails.

6. Output SUCCESS.

Failure probability FAIL1,i. We claim that FAIL1,i takes place with a negligible
probability. By applying [58, Lemma 2.2], the average min-entropy of D|out−i
is at least nR lg ℓ− L− κ, which implies that the min-entropy of D|out−i is at
least nR lg ℓ− L− 2κ ≥ 8nR

9 lg ℓ+ nR with probability 1− 2−κ (assuming that
nR ≥ 2κ).
Failure probability FAIL2,i.

Lemma 7.10. The experiment outptus FAIL2,i with a negligible probability.

We give the proof later in Section 7.3.8.
Failure probability FAIL3,i We show that FAIL3,i occurs with negligible
probability. Let n = nR and n′ = n′R for brevity of notation. Recall that
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n′ = n/3. Let Xj be an indicator variable that represents whether there is an
edge from (n− n′) nodes to iteration j. Therefore, we have

Pr
H2

[|T | = r] = Pr
H2

 kb∑
j=1

Xj = kb − r

 .

Recall that pj ≤ 1−(η−θ)1/n
′
and Pr[Xj = 1] = 1−(1−pj)n−n

′ ≤ 1−(η−θ)
n−n′
n′ =

1− (η−θ)
2 ≤ 1− (2/5)2. Therefore, we have

m := E

 kb∑
j=1

Xj

 ≤ kb · (1− (η−θ)
2) ≤ 0.84kb

Using the Chernoff bound and due to kb ∈ Ω(κ), we have

Pr
H2

[
|T | ≤ kb

10

]
= Pr

H2

 kb∑
j=1

Xj ≥
9

10
kb

 ≤ exp

(
− (0.9kb −m0)

2

2m0

)
= exp(−Ω(κ)).

Failure probability FAIL4,i. By Lemma 5.13, for all i ∈ [u], conditioned on
FAIL1,i, FAIL2,i, FAIL3,i not occurring, let

p4 := Pr
H1,H2

[IsAGoodBundle(i,out−i,D, A, I, x∗, H1, H2) = FAIL4,i].

Then, we have p4 ∈ O(kv lg
3(κ)/(nR)

0.5).
Existence of a good bundle out of u bundles. Observe that condi-
tioned on FAIL1,i, FAIL2,i, FAIL3,i not occurring, the process outputs FAIL4,i
independently of (out−i, R′), since the hash values in H2 for any iteration are
chosen independently of those for the other iterations. Using the above, since
kv/
√
nR = O(1/

√
κ), we have the following:

The experiment IsAGoodBundle outputs SUCCESS for at least one
bundle with probability 1− pu4 = 1− negl(κ).

Noise distribution. We define a noise distribution Φ and give an analysis of
the hockey stick divergence of Φ(r) and Φ(r − lg lg(κ)).

Definition 7.11 (Noise distribution Φ). We define Φ(r) as follows:

• Choose H1 and H2 randomly.

• Let i∗ ∈ [u] be the index to the bundle that IsAGoodBundle outputs
SUCCESS.

• For r ∈ [0, kv], output DT,r(D2,i∗), where T = AvailG(Kθ,i∗ , R \R′).

• For r ̸∈ [0, kv], Φ(r) := 0
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Lemma 7.12. The hockey stick divergences Dhs
eϵ (Φ(r),Φ(r − lg lg(κ))) and

Dhs
eϵ (Φ(r − lg lg(κ)),Φ(r)) are both negligible in κ.

Proof. For brevity, for any r, denote Dr := DT,r(D2,i∗). Conditioned on IsA-
GoodBundle outputting SUCCESS with input out−i∗ , we have a and b such
that for r ∈ [a+ lg lg κ, b],

e−ϵ ≤
e−ϵ/3En′

kv,r

eϵ/3En′
kv,r−lg lg(κ)

≤ Dr

Dr−lg lg(κ)
≤

eϵ/3En′
kv,r

e−ϵ/3En′
kv,r−lg lg(κ)

≤ eϵ.

The first and last inequalities are from Corollary 5.11. The second and third
inequalities are from the condition that the process outputs SUCCESS. The
hockey stick divergence Dhs

eϵ (Φ(r),Φ(r − lg lg(κ))) is therefore at most∑
r ̸∈[a+lg lg κ,b]

Dr ≤ kv · negl(κ) = negl(κ).

Similarly, Dhs
eϵ (Φ(r − lg lg(κ)),Φ(r)) is also negl(κ).

Putting it all together. Let c be the final count produced by running protocol
πNMH. We consider the probabilities

Pr
H1,H2,D

[c | B+x∗ ] and Pr
H1,H2,D

[c | B].

We consider only runs of the protocol that yield c and for which there exists
some i∗ ∈ [u] such that the process IsAGoodBundle returns SUCCESS given
out−i∗ as input. We just have argued that such an i∗ exists with all but negligible
probability.

Further, we consider only runs of the protocol for which out+bad − outbad ≤
s = lg lg(κ). By Lemma 5.13, this also occurs with all but negligible probability,
We will also leak kv = |Avail(Kθ,i∗ , R \R′)|.

Conditioned on the above events, by the definition of the distribution Φ, the
value outi∗ contributes (kv − r) to the final count c with probability p = Φ(r).
Recall that every iteration j in Kθ,i∗ is good, which means minhj(A) = minhj(I),
potentially contributing to the output.

Therefore, assuming none of bad events occur (which happens with over-
whelming probability), by applying Lemma 7.12, the probability that the ratio of
probabilities of a certain output out for B+x∗ and B is not contained in [e−ϵ, eϵ]
is negl(κ), and therefore we conclude that the protocol satisfies the DDP security.

7.3.6 Proof of Lemma 5.13

When considering the probability of DT,r(D) and IR′,T,r over the choice of H2,
the identity of T doesn’t matter except for its size kb = |T |. Therefore, in
this case, we will simply use Dkb,r(D) and IR′,kb,r Moreover, when it is clear
from the context, we will sometimes omit kb and D and say ER′

r = E
n′
R

r and
IR′,r = IR′,kb,r, and Dr = Dkb,r(D).

We first show the following lemma holds.
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Lemma 7.13. Let D be a distribution over sets of size n′R with geometric
collision property. Fix H1 and consider kb, θ, a, b specified in Lemma 5.11 with
the same requirements. Then, we have the following:

Case 1: If r ̸∈ [a+ s, b], we have PrH2 [Dkb,r(D) ≤ negl(κ)] ≥ 1− negl(κ).

Case 2: If r ∈ [a, b], then we have

Pr
H2

[
e−ϵ/3E

n′
R

kb,r
≤ Dkb,r(D) ≤ eϵ/3E

n′
R

kb,r

]
≥ 1− (eϵ/3 − 1)−2 · 16 lg

3(κ)
√
nR

.

Then, Lemma 5.13 follows by taking a union bound over different cases of
r ∈ [kb].
Proof of Lemma 7.13

We also define ρ(R′) := PrR′∼D̃[R
′].

Proof for Case 1. We first consider Case (1). By applying the Case (1) of
Corollary 5.11, we have E

n′
R

r ∈ negl(κ). Given E
n′
R

r ∈ negl(κ), we show

Pr
H2

[Dr(D) ≤ negl(κ)] ≥ 1− negl(κ).

Recall that Dr(D) =
∑

R′ ρ(R′) · IR′,r. Assume toward the contradiction
that the negation of the statement holds. This means there are polynomials p
and q, and a collection Heavy of R′s such that

Pr
H2

 ∑
R′∈Heavy

ρ(R′) · IR′,r ≥ 1/p(κ)

 ≥ 1/q(κ).

The above implies that
∑

R′∈Heavy ρ(R
′) ≥ 1/p(κ). Now, since D and H2 are

independent, we have
∑

R′∈Heavy ρ(R
′) PrH2

[IR′,r] ≥ 1
p(κ)q(κ) . However, consider-

ing that PrH2
[IR′,r] = E

n′
R

r , which is negligible, the above is a contradiction.
Proof for Case 2. We will bound Dr =

∑
R′ ρ(R′) · IR′,r using Chebyshev

inequality. For this, we would like to bound the variance of Dr.
We start with showing the following lemma, which will allow us to ignore

the tail when we bound the variance. Below, the value z will correspond to the
size of the intersection of the two sets R′i and R′j .

Lemma 7.14. Fix H1. Consider a graph G ← MinhashGH1
(A, I, x∗, H2).

Consider any set T of iterations in G such that |T | = kb. Let Z be a set of
left nodes in G such that |Z| ≤ n′R. Let z = |Z|. Consider the probability
(over the choice of H2) that Z has more than z lg lg κ outgoing edges in G. This
probability is negligible in κ.
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Proof. Let p = 1 − (η−θ)
1/n′

R . We first show that p ≤ 1/n′R. Recall θ ≤ 1/10,
which implies e−1 ≤ 1/2− θ = η−θ. Therefore, we have (1− 1/n′R)

n′
R ≤ e−1 ≤

η−θ, so 1− 1/n′R ≤ (η−θ)
1/n′

R . Therefore, we have p = 1− (η−θ)
1/n′

R ≤ 1/n′R.
Let Edges(Z, T ) be the set of edges from Z to T . Over the choice of H2, the

probability that each pair in Z × T forms an edge is at most p. Therefore, we
can simply use a Binomial distribution to bound the probability. In particular,
with t = lg lg κ we have

Pr
H2

[
|Edges(Z, T )| ≥ zt

]
≤ Pr

[
B(zk̂, p) ≥ zt

]
≤
(
zk̂

zt

)
· pzt ≤

(
zk̂

zt

)
·
(

1

n′R

)zt

≤

(
ek̂

tn′R

)zt

Since n′R is much larger than kb, the above probability becomes negligible in κ.

Now we prove the following lemma towards bounding the variance of Dr.

Lemma 7.15. Fix H1. We set the parameters for kb, a and b as stated in
Lemma 5.13. Let R′i, R

′
j be sets of nodes on the left of size n′R such that with

|R′i ∩R′j | = z. Let ζ = z lg lg κ. Then for all a ≤ r ≤ b, we have

Pr
H2

[IR′
i,r
∧ IR′

j ,r
] = E

H2

[IR′
i,r
· IR′

j ,r
] ≤

(
1 +

ζ · (eζϵ/3 + 1)

η−θzkb/n′
R

)(
E

n′
R

r

)2
Proof. Fix R′i, R

′
j with |R′i ∩R′j | = z. Let Z = R′i ∩R′j and X = R′i − Z. Then,

we have

Pr
H2

[IR′
i,r
∧ IR′

j ,r
] =

r∑
m=0

Pr[IX,m ∧ IZ,r−m ∧ IR′
j ,r

]

≤
r−ζ∑
m=0

Pr[IZ,r−m] +

r∑
m=r−ζ+1

Pr[IX,m ∧ IR′
j ,r

]

=

r∑
m=ζ

Pr[IZ,m] +

r∑
m=r−ζ+1

Pr[IX,m] · Pr[IR′
j ,r

]

≤ negl(κ) +
r∑

m=r−ζ+1

Pr[IX,m] · Pr[IR′
j ,r

]

= negl(κ) + E
n′
R

r ·
r∑

m=r−ζ+1

Pr[IX,m].

The second inequality holds due to Lemma 7.14.
It is left to bound Pr[IX,m] for m ∈ (r− ζ, r]. We observe that PrH2

[IX,m] =
Pr[IR′

i,m
| IZ,0]. In other words, the event that X contributes to noise pattern m

is equivalent to the event that R′i contributes to m conditioned on the intersection
having no contribution. Therefore, we have

Pr
H2

[IX,m] =
Pr[IR′

i,m
∧ IZ,0]

Pr[IZ,0]
≤

Pr[IR′
i,m

]

η−θzkb/n′
R

=
E

n′
R

m

η−θzkb/n′
R

.
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We now bound E
n′
R

m for m ∈ (r − ζ, r]. Let m∗ := argmaxm{E
n′
R

m : m ∈
(r−ζ, r]}. Using Corollary 5.11 we have En′

R
m∗ ≤ (eϵ/3)ζ ·En′

R
r +negl(κ). Therefore,

we have

Pr
H2

[IR′
i,r
∧ IR′

j ,r
] ≤ negl(κ) + E

n′
R

r ·
r∑

m=r−ζ+1

Pr[IX,m] ≤ negl(κ) + ζ · En′
R

r · Pr[IX,m∗ ]

= negl(κ) + ζ · En′
R

r · E
n′
R

m∗

η−θzkb/n′
R

= negl(κ) + ζ · En′
R

r · e
ζϵ/3E

n′
R

r + negl(κ)

η−θzkb/n′
R

≤
(
1 +

ζ · (eζϵ/3 + 1)

η−θzkb/n′
R

)(
E

n′
R

r

)2
We set the parameters for H1, kb, a and b as stated in Lemma 5.13. Let D

be a distribution with the geometric collision property. Then, we show that for
every a ≤ r ≤ b, we have

VarH2
[Dr] ≤

16 lg3(κ)
√
nR

(
E

n′
R

kb,r

)2
.

Consider any r ∈ [a, b]. Recall that Dr :=
∑

R′∈Supp(D̃) ρ(R
′) · IR′,r.

VarH2
[Dr] =

∑
R′

i,R
′
j

ρ(R′i) · ρ(R′j) · (E[IR′
i,r
· IR′

j ,r
]− E[IR′

i,r
] · E[IR′

j ,r
])

≤
∑

R′
i,R

′
j :|R′

i∩R′
j |≥1

ρ(R′i) · ρ(R′j) · E[IR′
i,r
· IR′

j ,r
]

=

n′
R∑

z=1

Pr
R′

i,R
′
j∼D

[|R′i ∩R′j | = z] · E[IR′
i,r
· IR′

j ,r
]

≤
n′
R∑

z=1

(
1
√
nR

)z

·
(
1 +

ζ · (eζϵ/3 + 1)

η−θzk/n
′
R

)
·
(
E

n′
R

r

)2
≤

n′
R∑

z=1

(
1
√
nR

)z

·
(
ζ · eζ + 2

(2/5)ζ/3

)
·
(
E

n′
R

r

)2
≤

n′
R∑

z=1

(
1
√
nR

)z

·
(
8ζ+1

)
·
(
E

n′
R

r

)2

The first inequality holds because if R′i are R′j are disjoint, then IR′
i,r

and IR′
j ,r

are
independent over the choice of H2, and the relevant terms are canceled out. The
second inequality is due to the geometric collision property of D and Lemma 7.15.
The third inequality holds with ϵ ≤ 3 since θ < 1/10 and kb is much smaller than
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n′R. Therefore, we have VarH2
[Dr] ≤ 8·

(
E

n′
R

r

)2
·
∑n′

R
z=1

(
lg3 κ√
nR

)z
≤ 16 lg3 κ√

nR

(
E

n′
R

r

)2
.

Finally, by Chebyshev, we have that for all a ≤ r ≤ b,

Pr
H2

[
Dr /∈ [e−ϵ/3(E

n′
R

kb,r
), eϵ/3(E

n′
R

kb,r
)]
]
≤ Pr

[
|Dr − E

n′
R

kb,r
| ≥ (1− e−ϵ/3) · En′

R

kb,r

]
≤ Var[Dr]

(1− e−ϵ/3)2 · (En′
R

kb,r
)2
≤ 16 lg3(κ)

(1− e−ϵ/3)2
√
nR

.

7.3.7 Strong Chain Rule

Strong chain rule for a special case: achieving flatness through clus-
tering. Fortunately, a stronger version of the chain rule is known to hold for
a special leakage pattern, i.e., when elements are conditioned in order [164];
very roughly speaking, for every i, the min-entropy of Ri|(R1, . . . , Ri−1) is es-
sentially the same as the min-entropy of (R1, . . . , Ri) minus the min-entropy of
(R1, . . . , Ri−1) at the sacrifice of an additional small leakage, which is called a
spoiling leakage.

They achieve this by grouping possible sequences with a similar distributional
characteristic into the same cluster. Then, in every cluster, the distribution of
sequences conditioned on that cluster will be essentially flat. Now, the spoiling
leakage corresponds to the cluster identifier. By making every cluster contain
sufficiently many sequences (leading to sufficient min-entropy due to flatness),
the total number of clusters can be small (leading to a short spoiling leakage).
Notes on notations. For brevity, in this section, we omit the subscript from nR,
i.e., we denote n = nR. For any sequence of random variables R = R1, . . . , Rn

(for the secret input R), we denote R<i = R1, . . . , Ri−1 and R≤i = R1, . . . , Ri.
Likewise, we extend such subscript notations and use R>i and R≥i. We use
lower case r = r1, . . . , rn to denote the actual set/sequence.
Strong chain rule for our setting. We first adapt the result in [164] into
our setting. Then, we argue that a sufficient number of elements still have high
min-entropy, even conditioned on the previous elements. Finally, we show that
these high min-entropy (conditioned) elements provide the geometric collision
property.

Theorem 7.16 (Block structures with few bits spoiled in our set-
ting). We consider a min-hash graph G = (X ,Y, E) constructed from
MinhashGH1

(A, I, x∗, H2), while focusing on a single bundle Kθ,∗ of itera-
tions.

Let U = U1×· · ·×Un be a fixed universe and R = (R1, . . . , Rn) be a sequence
of (possibly correlated) random variables where each Ri is over Ui (and all are
disjoint) and |Ui| = ℓ for all i. Then, for any ϵ ∈ (0, 1) and any δ > 0, there
exists a spoiling leakage function fG(R) that satisfies the following properties.

1. It holds that PrR[f(R) = ⊥] ≤ ϵn.
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2. Let Im(f) be the set of images of f . Every y ∈ Im(f) \ {⊥} specifies two
disjoint sets V and W such that V ∪W = [n].

3. Conditioned on any y ∈ Im(f) \ {⊥}, for every i ∈ V , every element in
distribution Ri | R<i has low probability weight, i.e.,

∀y ∈ Im(f) \ {⊥},∀r s.t. f(r) = y,∀i ∈ V : Pr

[
Ri = ri

∣∣∣∣∣ R<i = r<i, y

]
≤ 2δ

n1.5
.

4. Conditioned on any y ∈ Im(f) \ {⊥}, for every i ∈ W , it holds that
Ri | R<i has small support size, i.e.,

∀y ∈ Im(f) \ {⊥}, ∀r s.t. f(r) = y,∀i ∈W :

|{ri : Pr[Ri = ri|R<i = r<i, y]] ≥ 0}| ≤ 2δ · n1.5.

5. |Im(f)| ≤ n · (2e)n/2 · (n+kb)!
n! · (2(lg(ℓ) + lg(1/ϵ))/δ)

n.

6. AvailG(Kθ,∗, RW ) can be computed from f(R), where RW := {Ri : i ∈W}.

Proof of Theorem 7.16
By following the general idea of [164], we will build clusters, and the spoiling
leakage will be the cluster identifier. However, we will slightly change the way
we build clusters.
Condition 1. Throughout our proof, we let Pr[ri] denote Pr[Ri = ri] for
brevity, whenever the referred random variable is clear. Before forming the
clusters, we will first like to exclude all sequences r ∈ U = U1 × · · · × Un having
a very small probability PrR[Ri = ri | R<i = r<i] < ϵ/ℓ for any i ∈ [n] and only
consider the remaining U ′ ⊂ U . Specifically, we let f(r) =⊥ for all r /∈ U ′. As
we will see later, this probability lower bound is vital to upper bound |Im(f)|.

Claim 7.17. Let U ′ be the set containing all the sequences r such that PrR[Ri =
ri | R<i = r<i] ≥ ϵ/ℓ for all i ∈ [n] . Then, we have Pr[r ∈ U ′] ≥ 1− ϵn.

Proof. For each i ∈ [n], and any r<i ∈ U1 × · · · × Ui−1, we have∑
u∈Ui:PrR[Ri=u|R<i=r<i]<ϵ/ℓ

Pr
R
[Ri = u | R<i = r<i] <

∑
u∈Ui

ϵ/ℓ = ϵ.

Therefore, using a union bound across all i ∈ [n], we have Pr[r ̸∈ U ′] ≤ ϵ · n.

Building clusters. For each r ∈ U ′, we describe how to compute f(r) =
(f1(r), f2(r), . . . , fn(r)), which will serve as the cluster identifier. Let r(a) denote
a rounding function that rounds a to the closest multiple of δ/2. We say a ≈r a

′

if r(a) = r(a′).

For each r, do the following:
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1. Let f>n(r) = ⊥ for any r, and initialize W = ∅.

2. For i = n, . . . , 1, do the following:

(a) Let sp1
i (r) denote the surprise of the ith element of r. More formally,

sp1
i (r) = − lg Pr

R
[Ri = ri | R<i = r<i, f>i(R) = f>i(r)].

This surprise measure represents how rare and surprising the event
ri is, conditioned on r<i, f>i(r). In a sense, we will group sequences
with similar surprises into a cluster.

(b) Let sp2
i (r) denote the surprise of the sequences with a similar surprise

level in aggregate.

sp2
i (r) = − lg Pr

R
[sp1

i (R) ≈r sp1
i (r) | R<i = r<i, f>i(R) = f>i(r)].

Note sp1
i (r) ≥ sp2

i (r), since at least sequence r has sp1
i (r) and possibly

more points may approximately share the surprise. Note also that
sp2

i (r) is a deterministic function of sp1
i (r), r<i, f>i(r).

(c) If r(sp1
i (r))− r(sp2

i (r)) ≥ 1.5 lg(n) then let fi(r) = (r(sp1
i (r)), true).

(d) Otherwise, let fi(r) = (r(sp1
i (r)), false,Hi) and add i to W . Here,

Hi is defined as N({ri}) \N(rW ), where N refers to the neighbors
(restricted to Kθ,∗) of the input set of nodes in G. In other words, Hi

contains the iterations newly covered by element ri; any iterations
previously covered by rW are ruled out in Hi. In this way, we can
reduce the length of the cluster identifier.

3. Set f(r) = f1(r), . . . , fn(r). Set V = [n] \W .

Conditions 2 and 3. Condition 2 follows from how V is computed in
step 3. We now show that condition 3 holds. In particular, ∀y ∈ Im(f(·)) \
{⊥}, ∀r s.t. f(r) = y,∀i ∈ V we have

Pr[ri | r<i, y] = Pr[ri | r<i, y≥i] =
Pr[ri ∧ r<i ∧ y≥i]

Pr[r<i ∧ y≥i]
=

Pr[ri ∧ r<i ∧ y>i]

Pr[r<i ∧ y>i] Pr[yi | r<i ∧ y>i]

The first equality is due to y<i being a deterministic function of r<i, y≥i.
Similarly, the nominator of the final fraction is due to yi being a deterministic
function of r≤i, y>i. Moreover, yi,2 (i.e., true) can be deterministically computed
from yi,1(i.e., r(sp1

i (r))), r<i, y>i. Therefore, the above is equal to

Pr[ri ∧ r<i ∧ y>i]

Pr[yi,1 | r<i ∧ y>i] Pr[r<i ∧ y>i]
=

Pr[ri | r<i ∧ y>i]

Pr[y1,i | r<i ∧ y>i]
=

2−sp1
i (r)

2−sp2
i (r)
≤ 2δ

n1.5
. (10)

The last inequality holds since i ∈ V , r(sp1
i (r))− r(sp2

i (r)) ≥ 1.5 lg(n).
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Condition 4. For r, y, i as quantified in the theorem statement, we have

|{ri : Pr[Ri = ri|R<i = r<i, y]] ≥ 0}|
= |{ri : Pr[Ri = ri ∧R<i = r<i ∧ y]] ≥ 0}|
= |{ri : Pr[Ri = ri ∧R<i = r<i ∧ yi,1, yi,2, y>i]] ≥ 0}|
≤ |{ri : Pr[Ri = ri|R<i = r<i, yi,1, yi,2, y>i]] ≥ 0}|

By a similar argument as above, for all ri s.t. Pr[Ri = ri|R<i =
r<i, yi,1, yi,2, y>i]] ≥ 0, it holds

Pr[Ri = ri|R<i = r<i, yi,1, yi,2, y>i] =
Pr[ri | r<i ∧ y>i]

Pr[yi,1 | r<i ∧ y>i]
=

2−sp1
i (r)

2−sp2
1(r)
≥ 2−δ

n1.5

where the inequality holds since i ∈ W , we know that r(sp1
i (r)) − r(sp2

i (r)) ≤
1.5 lg(n). This means that |{ri : Pr[Ri = ri|R<i = r<i, y≥i]] ≥ 0}| ≤ 2δ · n1.5.

Condition 5. To bound |Im(f)|, we first upper bound yi,1. Recall that
PrR[Ri = ri | R<i = r<i] ≥ ϵ/ℓ for all i ∈ [n] and r ∈ U ′. Therefore, PrR[Ri =
ri | R<i = r<i, y] ≥ ϵ/ℓ for all i ∈ [n], and ∀r such that f(r) = y.

Therefore, for all r ∈ U ′, i ∈ [n], we have sp1
i (r) ≤ lg(ℓ) + lg(1/ϵ), which

implies that yi,1 has at most 2(lg(ℓ)) + lg(1/ϵ))/δ different possibilities.
To upper bound the number of possibilities of the remaining parts, it suffices

to upper bound the number of choices for set W of size m, as well as the number
of possibilities for Hi’s in each slot i ∈ W . Clearly, the former is

(
n
m

)
. For

the latter part, note that each iteration appears at most once over all m slots.
Therefore, the problem becomes how we can assign kb different iterations into
m+ 1 positions (with some positions possibly containing none) while assigning
them to the m+ 1th position when they never appear in any slot of W . This is
a well-known problem of stars and bars with m+ 1 variables and sum kb, which
has

(
m+kb

m

)
possibilities. Since we have kb! different orderings for kb iterations,

the upper bound is
(
m+kb

m

)
· (kb!). We have:

|Im(f)| ≤ (2(lg(ℓ) + lg(1/ϵ))/δ)
n

(
n∑

m=0

(
n

m

)(
m+ kb

m

)
· kb!

)

= (2(lg(ℓ) + lg(1/ϵ))/δ)
n

(
n∑

m=0

(
n

m

)
(m+ kb)!

m!

)

≤ n ·
(

n

n/2

)
· (n+ kb)!

n!
· (2(lg(ℓ) + lg(1/ϵ))/δ)

n

≤ n · (2e)n/2 · (n+ kb)!

n!
· (2(lg(ℓ) + lg(1/ϵ))/δ)

n
.

Condition 6. Finally, condition 6 follows from the definition of the clustering
procedure. In particular, HW =

⋃
i∈W Hi contains all the iterations that rW

covers. The available set can be computed by Kθ,∗ \HW . This concludes our
proof.
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Generalization
It can be seen that in the above proof, the only properties that we used of the

additional leakage Hi is that for i ∈W , Hi depends only on Ri, y>i and that the
number of choices for the output of the sequence of leakages [Hi]i∈W is bounded
by some B. Theorem 5.14 stated in Section 5.8.5 is restatement of Theorem 7.16
with respect to any such leakage function. Note that the leakage functions ℓi
specified above can model leakage with respect to a random oracle h, by letting
ρi = h(Ri).

7.3.8 Proof of Lemma 7.10

For brevity, we denote D = D2,i and Dleak = D1,i in the experiment
IsAGoodBundle. We show that D has the geometric collision property. In
other words, we would like to show that when R is chosen uniformly at random
from universe U then the distribution of these nR = nB − nI elements has the
geometric collision property even with the leakage.

Towards this goal, by applying Theorem 7.16 to this distribution, we show
that even with the leakage, there are at least nR/3 elements that preserves enough
min-entropy. We next show how these elements with sufficient min-entropy give
the geometric collision property.

Remark 7.18 (Getting rid of tiny parts). Similar to [164, Remark 2], we can
further require that each cluster should have a probability that is “not too small”.
Therefore, we define a new leakage function f ′ by substituting the ϵ in the above
theorem with ϵ/2, and additionally letting f ′(r) =⊥ for all r such that y ∈ f(r)
and PrR[f(R) = y] < ϵn/(2|Im(f)|) (their total probability is at most ϵn/2), we
obtain the following: f ′ satisfies all conditions in Theorem 7.16. Additionally,
∀y ∈ Im(f ′), we have PrR[f

′(R) = y] ≥ ϵn/(2|Im(f)|).

Fraction of blocks with high entropy. Using Theorem 7.16, with setting
ℓ ≥ 4n3 and assuming sufficient min-entropy of R, we first show that one can
ensure more than 1/3 fraction of the blocks having min-entropy at least 1.5 lg(n),
upon leaking the outcome of f ′ and all previous blocks.

First notice that with all but ϵn probability, f ′(R) ̸=⊥. Therefore, it suffices
to let ϵ = 2−κ. Then, by setting δ = 1, we have

lg(|Im(f)|) ≤ n · (2e)n/2 · (n+ kb)
kb · (2(lg(ℓ) + lg(1/ϵ))/δ)

n

=

(
lg(n) + n/2 · lg(2e)

)
+ kb · lg(n+ kb) + n · (1 + lg(lg(ℓ) + κ))

< 3n/2 + 2kb lg n+ n(2 + lg κ) < 0.5n lg n

for sufficiently large n with kb = Ω(κ) and n/k2b = Ω(κ).
Combining the above with Remark 7.18, we have PrDleak

[f ′(R) = y] ≥
ϵn/(2 · 20.5n lg(n)) and for every y ∈ Im(f ′) \ {⊥}. Moreover, for every r such
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that f ′(r) = y, we have

Pr
D
[r] = Pr

Dleak

[r | y] = PrDleak
[r ∧ y]

PrDleak
[y]

≤ 2−(
8n
9 lg ℓ+n)

(ϵn/2) · 2−0.5n lgn
= 2−(

8
9 log ℓ−0.5 lgn+1)·n · (2/ϵn),

(11)

which suggests D has min-entropy at least (89 log ℓ− 0.5 lg n+ 1) · n− lg(2/ϵn).
We show that the following holds: The min-entropy of at least n′ = n/3 blocks,
conditioned on the outcome of all prior blocks as well as y, is at least lg(n1.5).

Towards a contradiction, assume otherwise. Let V be the set of blocks
with min-entropy at least lg(n1.5) and let W be the set of blocks with min-
entropy less than lg(n1.5) (as defined in Theorem 7.16). We will show that
if |V | ≤ n/3 there exists a point r in the support of D such that PrD[r] >

2−(
8
9 log ℓ−0.5 lgn+1)·n · (2/ϵn), contradicting the min-entropy of D.
First, find any value r∗V such that PrD[RV = r∗V ] ≥ 1

ℓ|V | . Note that r∗V must
exist since the support size of RV is at most ℓ|V |. Let SuppW (r∗V ) = {r : rV =
r∗V ∧ PrD[R = r] > 0}. Then, we have PrD[R ∈ SuppW (r∗V )] = Pr[RV = r∗V ] ≥
1

ℓ|V | .

Second, we show that |SuppW (r∗V )| ≤ (2 · n1.5)|W |. Consider any r ∈
SuppW (r∗V ). Applying the fourth condition of Theorem 7.16 with δ = 1, condi-
tion on any y ∈ Im(f ′) \ {⊥}, for any i ∈ W and any fixing of R<i = r<i, the
number of elements in the support of Ri | r<i is at most 2 · n1.5, which implies
that |SuppW (r∗V )| must be at most (2 · n1.5)|W |, since the positions for V are
fixed to r∗V .

Based on the above two arguments, by the averaging argument, there must
be some r∗ ∈ SuppW (r∗V ) for which PrD[R = r∗] ≥ 1

(ℓ)|V | · 1
(2·n1.5)|W | . Therefore,

we have

− lg Pr
D
[r∗] = |V | lg(ℓ) + |W | lg(2n1.5) = |V | lg ℓ+ |W |+ 1.5(n− |V |) lg n

≤ n+ |V | lg(ℓ/n) + 1.5n lg n ≤ n+ n/3 lg(ℓ/n) + 1.5n lg n

= n+ n/3 lg(ℓ)− 1/3n lgn+ 1.5n lgn,

where the second to last line follows assuming |V | < n/3.
To reach contradiction to (11), we require that

n+ n/3 lg(ℓ)− 1/3n lg n+ 1.5n lgn ≤
(
8

9
lg ℓ− 0.5 lgn+ 1

)
· n− lg(2/ϵn).

The above is implied by 5/3n lgn ≤ 5/9n lg ℓ− lg(2/ϵn).
When ℓ ≥ 4n3 the above is implied by 5/3n lgn ≤ 5/3n lgn+10/3n−lg(2/ϵn),

which is true for n ≥ lg(1/ϵ) = κ. Thus we reach contradiction to (11). We
therefore conclude that |V | ≥ n/3.
Geometric collision property. Note that we can equivalently view R′ in
the support of D as a set of size n′, or as a stream of elements of length n′,
where the element in the i-th block (for i ∈ [n′]) comes from universe Ui, and
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{U1, . . . , Un′} are mutually disjoint. Taking the second view, given R′, S′ in the
support of D, we have that |R′ ∩ S′| = z if and only if there exists some set
Z ⊆ [n′] of size z such that (1) the ordered set of elements in the blocks of R′
indexed by Z (denoted R′Z) is equal to the ordered set of elements in the blocks
of S′ indexed by Z (denoted S′Z) and (2) the set of elements in the blocks of
R′ indexed by [n′] \ Z (denoted R′

Z
) and the set of elements in the blocks of S′

indexed by [n′] \ Z (denoted S′
Z
) are disjoint.

We are now ready to analyze the probability that |R′ ∩ S′| = z for R′, S′

drawn from D, and for z ∈ [n′]:

Pr
R′,S′←D

[|R′ ∩ S′| = z] =
∑

Z⊆[n′],|Z|=z

Pr
R′,S′←D

[
(R′Z = S′Z) ∧

(
R′

Z
∩ S′

Z
) = ∅

)]
≤

∑
Z⊆[n′],|Z|=z

Pr
R′,S′←D

[R′Z = S′Z ] ≤
∑

Z⊆[n′],|Z|=z

(
1

n1.5

)z

The second inequality holds since each element in the stream has min-entropy at
least lg(n1.5). Therefore, we have PrR′,S′←D[|R′ ∩ S′| = z] ≤

(
n/3
z

)
·
(

1
n1.5

)z ≤(
1

n0.5

)z
.

7.4 FACTS
7.4.1 Proofs for tail bound probabilistic analysis

We now complete the proofs of lemmas and theorems in Section 6.4.3.
We start with the following standard way to approximate numbers near 1

with exponentials.

Lemma 7.19. For any real constant α > 0, and any real x with 0 < x ≤ α, we
have

exp
(
− 1

α ln 1
1−α · x

)
≤ 1− x < exp(−x).

We also re-state this straightforward consequence of the Hoeffding/Chernoff
bound on the sum of random variables:

Lemma 7.20. Let X1, . . . , Xn be independent Poisson trials, and write Y =∑
i Xi for their sum. If E[Y ] = µ, then for any δ > 0, each of Pr(Y ≥ µ+ δ) and

Pr(Y ≤ µ− δ) are at most exp(−2δ2/n).

We now recall and prove the building-block lemmas from Section 6.4.3.

Lemma 6.2. Let x be an item such that at most τ of x’s item slots are filled.
If the CCBF parameters s, u, v satisfy v ≥ 7.042652τ and u ≥ 0.5184846 s

τ , then
the probability that a call to Increment(x,C) fills in one more of x’s item slots is
at least 0.956414.

Proof. From (4), we know this probability is exactly pw = 1 − (s−u)w
sw , where

w = v − τ is the number of unfilled slots remaining. Using Lemma 7.19 we have
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(s−u)w
sw ≤

(
1− u

s

)w ≤ exp(−uw/s), which means that

pw ≥ 1− exp
(
−u(v−τ)

s

)
= 1− exp

(
−uτ

s ·
(
v
τ − 1

))
.

Applying the two lower bounds on uτ
s and v

τ from the lemma statement yields
the claimed result.

Lemma 6.3. Let x be any item. If the CCBF parameters s, u, v satisfy 371 ≤ v ≤
0.00386s and u ≤ 3.65151 s

v , then the probability that a call to Increment(x,C)
fills in one more of x’s item slots is at most 0.974876.

Proof. Using again (4), the probability is exactly pw = 1− (s−u)w
sw , where again

w ≤ v is the number of unfilled slots for item x. Then

(s−u)w
sw ≥ (s−u)v

sv ≥
(

s−u−v+1
s−v+1

)v
>
(
1− u

s−v

)v
.

Using upper bounds on v
s and u from the lemma statement, we have

pw < 1−
(
1− u

s−v

)v
≤ 1−

(
1− 3.66567 1

v

)v
.

Finally, the lower bound on v from the lemma statement shows 3.66567/v ≤
0.00989, and so we can finally use the lower exponential bound of Lemma 7.19
to obtain the stated result.

Lemma 6.4. Let s, u, v be CCBF parameters that satisfy the conditions of
Lemma 6.3, and suppose m, t are integers such that s ≥ 96m and v ≤ 7.409t.
Then the tipping point τ , for threshold t and with m total set bits in the table
T , is at most 1.0520553t.

Proof. The tipping point τ is the expected number of slots filled in the table if t
of the m total calls to Increment were actually called on this particular item.

We can divide the calls to Increment into two groups: the t calls for item x,
and the m − t calls for other items. The expected number of slots within x’s
item set filled by the first group is at most 0.974876t, from Lemma 6.3.

For the second group, these calls to Increment on unrelated items are dis-
tributed uniformly at random among all table indices, and so their expected
fraction within this item set is the same as their overall fraction in the table.
Therefore, the expected number of slots filled by calls to Increment on other
items is at most

(m− t)v

s
<

mv

s
≤ 7.409

96
t.

By linearity of expectation, we can sum these two to obtain an upper bound
on the total expected tipping point as given in the lemma statement.

Now we can proceed to the proofs of the main theorems on the accuracy of
the CCBF.
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Theorem 6.5. Let n be an upper bound on the total number of calls to Increment,
and t be a desired threshold for TestCount. Suppose the parameters s, u, v for a
CCBF data structure satisfy the conditions of Lemma 6.2, and furthermore that
v ≤ 8t. If the actual number of calls to Increment(x,C) is at most t− 2.1

√
λt,

then the probability TestCount(x, t) gives a false positive is at most 2−λ.

Proof. Let τt be the tipping point for any actual number m ≤ n of total set bits
in the table T and for the given threshold t. And consider random variables
X1, . . . , Xv for the v slots assigned to item x, where each X1 is 0 or 1 depending
on whether the corresponding slot in table T is 0 or 1. We want to know the
probability that the sum of the Xi’s is at least τt, which is what would cause
TestCount(x, t) to produce a false positive.

Let k = t − 2.1
√
λt be the actual number of calls to Increment on item x,

and write τk for the tipping point at threshold k. By definition and the exact
calculations for τk outlined earlier, we know that E[

∑
Xi] = τk.

The difference between these two tipping points τt−τk is the expected number
of extra slots filled by t− k calls to Increment, which from Lemma 6.2 is at least

0.956414(t− k) = 0.956414 · 2.1
√
λt ≥

√
λv
2 ,

where in the last step we used the upper bound on v from the assumptions of
the theorem.

The variables Xi are not independent, but they are negatively correlated,
meaning that the whenever one slot is filled, it only decreases the likelihood that
another is filled; intuitively, this is because there are now fewer chances to fill
the other slot. Therefore we can apply the Hoeffding bound in this direction
(Lemma 7.20) to say that

Pr

(∑
Xi ≥ τk +

√
λv
2

)
≤ exp(−λ),

as required.

Theorem 6.6. Let n be an upper bound on the total number of calls to
Increment, and t be a desired threshold for TestCount. Suppose the parameters
s, u, v for a CCBF data structure satisfy the conditions of Lemmas 6.2 and 6.4.
If the actual number of calls to Increment(x,C) is at least

1.1t+ .4λ+ .7
√
λt, (6)

then the probability TestCount(x, t) gives a false negative is at most 2−λ.

Proof. Writing k for the actual number of complaints given in (6), we need a
tail bound on the probability that, after k calls to Increment on the same item
x, there are still fewer than 1.0520553t slots of x’s item set filled in, where the
latter constant comes from applying the upper bound on the tipping point from
Lemma 6.4.
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For this, we need a lower bound on the expected number of bits set after k
calls to Increment on item x; from Lemma 6.2 this is at least 0.956414k.

Now we can apply the Hoeffding bound (Lemma 7.20), with µ = 0.956414k
and µ+ δ = 1.0520553t ≥ τ to see that the probability that less than τ bits of
x’s user set are flipped is at most

exp
(
−2(1.0520553t− 0.956414k)2/k

)
≤ exp

(
−2
(
0.38λ+ 0.66

√
λt
)2

/k

)
≤ exp

(
− .28λ2 + λ

√
λt+ .87λt

.4λ+ .7
√
λt+ 1.1t

)
≤ exp(−.7λ) ≤ 2−λ.

8 Timeline
The following timeline outlines the completion of the remaining research items
and the preparation of the final dissertation. As noted, sublinear secure protocol
works are largely complete. The schedule focuses on the execution of the follow-up
work on FACTS.
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Period Key Objectives & Milestones

Completed –
Present

• Completed research and publication for Secure
Search/Sampling (Sublinear-communication Secure
MPC).
• Completed research and publication for Privacy-
preserving set similarity via Min-Hash.
• Completed design, analysis, and evaluation of FACTS
(Accountability tracking on End-to-End Encrypted Mes-
saging Systems).
• Follow-up Work to enable spreader tracking via new
protocol designs (Accountability tracking on End-to-End
Encrypted Messaging Systems).

Month 1 – Month
2

Line 3 Implementation:
• Analyzing the system loads that our new design could
handle and identify bottlenecks if any.
• Estimating the actual cost of the new designed FACTS
for spreaders with two non-colluding servers.

Month 1 – Month
3

Line 3 Security and Privacy Analysis:
• Proof of security in malicious 2-party setting.
• Compare performance against the original FACTS
baseline.
• Milestone: Submit the paper to [TBD].

Month 3 – Month
4

Thesis Writing (Part I):
• Update Introduction and Literature Review based with
feedback and further research.
• Integrate all finished lines of work and write down the
full chapter of thesis research results.

Month 5 Thesis Writing (Part II) & Defense:
• Finish and integrate the results of the follow-up work
of FACTS on spreader tracking results into the final
dissertation.
• Final review with advisor.
• Milestone: Thesis Defense.

Table 2: Proposed timeline for the completion of the Ph.D. thesis.

9 Preliminary Results
As detailed in previous sections, the research objectives for our first line of
work (Secure Search, Sampling, and Similarity) and the second line of work (the
threshold traceback for originator tracking via FACTS) have been successfully
met. The results have been published and evaluated.
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Therefore, this section presents preliminary approach solely for our pro-
posed follow-up work of FACTS for messaging accountability tracking,
targeting spreader instead of originator: using efficient secure 2-party
computation with malicious security. The next steps include experiments and
cryptography analysis. The goal of these experiments is to demonstrate and
justify that with the most state-of-art 2-party computation building blocks such
as oblivious sorting, our design is practical and efficient with today’s large scale
of number of users and messages on End-to-End Encrypted messaging systems.
The goal of the cryptography analysis is to deliver strict security and privacy
guarantee while keeping the protocol practical and cost-friendly.

9.1 Microbenchmarks
Unlike the hash-based structures (CCBF) used in the original FACTS system,
our proposed follow-up design runs by two non-colluding servers with malicious
security. A primary concern is whether these secure 2-party computations
introduces prohibitive data transfer or latency, which in turns hurts the capability
of the design to handle the large scale of users and messages.

We benchmarked all major building blocks on two standard CloudLab servers
with average network bandwidth and latency inside United States. Table 3
shows the major communication-intensive 2-party operations and their servers’
communication cost.

9.2 Bandwidth Overhead Analysis
This new follow-up work focuses on the actual spreader of reported messages
instead of the originator. A fundamental change of this is that we rely on non-
colluding 2-party to make the design practical. With strong security guarantee,
this often comes at the cost of increased communication overhead as well as
computation cost. So far the main concern is the bandwidth and latency between
two servers would set a limit of how many complaints we could handle in each
epoch.

Since our design is sequential across different components and fully parallel
within each component, to assess this feasibility, we micro-benchmarked each
building blocks using the state-of-art protocols on 1 million reports per epoch.

Protocols Communication throughput Communication rounds
Poseidon Hash 21.4GB 400
Schnorr Signature Verification 1.1TB 2250
Oblivious Sorting 1.01TB 2610
Oblivious Deduplication 82.3GB 60

Table 3: Throughput and Round for each components in the follow-up FACTS for
spreaders with one million complaints per epoch
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9.3 Conclusion of Preliminary Data
These benchmarks indicate that while the proposed tools for this follow-up work
are communicational heavier than the original FACTS primitives, they provide
efficient and lightweight protocols for the large scale of popular E2EE messaging
systems such as Signal. This confirms the capability of our design. We are also
working on evaluation of end-to-end server runtime to show the actual cost of
our design.

10 Conclusion
This proposal outlines a comprehensive research agenda addressing the tension
between data privacy and utility, culminating in a rigorous examination of
accountability in end-to-end encrypted systems.

Our first line of work has established efficient, privacy-preserving primitives for
Secure Search, Secure Sampling, and Privacy-Preserving Set Similarity
via Min-Hash, demonstrating that sublinear communication is achievable
without compromising security and privacy guarantees. Our second line of work,
FACTS and the ongoing follow-up work, focused on a more specific application,
enabled threshold tracebacks of originator or spreader of reported messages on
E2EE messaging systems, proving that accountability mechanisms can coexist
with encryption, while still remain sublinear to the number of total messages
but only number of complaints.

Together, these three lines of work will contribute a unified framework for
scalable, privacy-preserving protocols and applications, providing both
theoretical advancements and practical tools.
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